Advertisement

Temperature Behaviour of the Viscoelastic Material Functions in Polymers

  • A. C. Diogo
Chapter
  • 456 Downloads
Part of the NATO ASI Series book series (NSSE, volume 302)

Abstract

Any processing procedure on a thermoplastic polymer involves both changes of temperature and pressure which may be quite severe. Most commonly, one starts with solid pellets at a temperature about 0.6 to 0.8 times the glass transition temperature Tg. The pellets usually feed a plasticating screw, where they are deformed and heated up to a melt (at a temperature T~ 1.3 Tg to 1.5 Tg for thermoplastics, higher for elastomers). Later the melt flows through a calender or a die, at a shear rate from 100 to 102 s1 or it is pushed to fill an injection mould at a shear rate one order of magnitude higher (~103 s 1 ). Both in calendering and in injection moulding a noticeable amount of pressure was built. Finally the melt is allowed to cool to the initial temperature, either by natural cooling or at some imposed cooling rate. The duration of the whole cycle (residence time + cooling time) is a few to several minutes. During it, the moduli changed by 5-6 orders of magnitude (from a few GPa to some kPa), the melt viscosity changed by 3-5 orders of magnitude too. Also the material may have been considerably compressed.

Keywords

Free Volume Master Curve Relaxation Modulus Creep Compliance Free Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov, A.P. and Lazurkin, Y.S. (1939) Zhur. Tekh. Fiz. 9, 1250–1260Google Scholar
  2. 2.
    Leaderman, H. (1943) Elastic andd Creep Properties of Filamentous Materials and Other High Polymers, The Textile Foundation, Washington DC.Google Scholar
  3. 3.
    Tobolsky, A.V. and Andrews, R.D. (1945) J..Chem. Phys. 13, 3ADSCrossRefGoogle Scholar
  4. 4.
    Tschoegl, N. (1989) The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  5. 5.
    Feny, J.D. (1980) Viscoelastic Properties of Polymers, J. Wiley, New York, 3rd ed.Google Scholar
  6. 6.
    Glasstone, S.N., Laidler, K., Eyring, H. (1941) The Theory of Rate Processes, McGraw Hill, N.Y.Google Scholar
  7. 7.
    Williams, M.L., Landel, R.F. and Ferry, J.D. (1955) J.Amer. Chem. Soc. 77, 3701CrossRefGoogle Scholar
  8. 8.
    Doolittle, A. K. (1951) J.. Appl. Phys. 12, 1471–1475ADSCrossRefGoogle Scholar
  9. 9.
    Cohen, M.H. and Turnbull, D. (1959) J. Chem. Phys. 31, 1164–1169ADSCrossRefGoogle Scholar
  10. 10.
    Cole, K. S. and Cole, R.H. (1941) J. Chem. Phys. 9, 341ADSCrossRefGoogle Scholar
  11. 11.
    Kobeko, P., Kuvshinskij, E. and Gurevitch, G. (1937) Techn. Phys. USSR 4, 622Google Scholar
  12. 12.
    Davidson, D.W., and Cole, R.H. (1950) J. Chem. Phys. 18, 1417ADSCrossRefGoogle Scholar
  13. 13.
    Havriliak, S. and Negami, S. (1966) J. Polym. Sci. C-14, 99–117Google Scholar
  14. 14.
    Kohlrausch, F. (1863) Pogg. Ann. Physik 29, 337ADSCrossRefGoogle Scholar
  15. 15.
    Williams, G., and Watts, D.C. (1970) Trans. Farad. Soc. 66, 80CrossRefGoogle Scholar
  16. 16.
    K.L. Ngai, E. Riande and G.B. Wright (eds) (1994), Relaxations in Complex Systems2, Elsevier, Amsterdam, vols I and II.Google Scholar
  17. 17.
    Havriliak, S. and Shortridge, T.J. (1990) Macromolecules 23, 648ADSCrossRefGoogle Scholar
  18. 18.
    Cohen, M.H. and Grest, G.S. (1979) Phys. Rev. B-20, 1077–1098ADSCrossRefGoogle Scholar
  19. 19.
    Diogo, A.C. and Velho, A.M. (1987) Mol. Cryst. Liq. Cryst. 153, 231–240.Google Scholar
  20. 20.
    Velho, A.M. and Diogo, A.C. (1989) Liquid Crystals 5, 349–357.CrossRefGoogle Scholar
  21. 21.
    Maia, J., Velho, A.M. and Diogo, A.C. (1992), in A. Conde, C.F. Conde and M. Millán (eds), Trends in Non-Crystalline Solids, World Scientific. Publ., Singapore, pp. 333–336.Google Scholar
  22. 22.
    Vogel, H. (1921) Phys. Z. 22, 645Google Scholar
  23. 23.
    Fulcher, G.S. (1925) J. Am. Ceram. Soc. 8, 339CrossRefGoogle Scholar
  24. 24.
    Angell, C.A. (1991) J. Non-Cryst. Solids 131–133, 13ADSCrossRefGoogle Scholar
  25. 25.
    Diogo, A.C. and Velho, A.M. (1990) Rev. Port. Hemorr. 4, 171Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • A. C. Diogo
    • 1
  1. 1.Dep. Eng MateriaisInstituto Superior TécnicoLisboa CodexPortugal

Personalised recommendations