Physical Phenomena Involved in Flows of Fresh Cementitious Materials

  • Nicolas Roussel
  • Annika Gram
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 15)


The vast family of industrial cementitious materials presents such a variety of behaviors in the fresh state that describing them as a whole seems unattainable (cf. Fig 1.1). This is even more so for our objective here: studying the possibility to predict their response in practical processing conditions.


Shear Rate Cement Paste Cementitious Material Concrete Research Fresh Concrete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coussot, P., Ancey, C.: Rheophysical classification of concentrated suspensions and granular pastes. Phys. Rev. E 59(4) (1999)Google Scholar
  2. 2.
    Roussel, N., Lemaître, A., Flatt, R.J., Coussot, P.: Steady state flow of cement suspensions: A micromechanical state of the art. Cement and Concrete Research 40, 77–84 (2010)CrossRefGoogle Scholar
  3. 3.
    Coussot, P.: Rheometry of pastes, suspensions and granular materials. Published by Jon Wiley and sons, Inc., Hoboken (2005)Google Scholar
  4. 4.
    Roussel, N.: Rheology of fresh concrete: from measurements to predictions of casting processes. Materials and Structures 40(10), 1001–1012 (2007)CrossRefGoogle Scholar
  5. 5.
    Roussel, N., Coussot, P.: “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J. Rheol. 49(3), 705–718 (2005)CrossRefGoogle Scholar
  6. 6.
    Coussot, P.: Rheometry of pastes, suspensions, and granular materials. John Wiley & sons, New Jersey (2005)CrossRefGoogle Scholar
  7. 7.
    Tatersall, G.H.: Structural Breakdown of cement pastes at constant shear rate. Nature 175, 166 (1955)CrossRefGoogle Scholar
  8. 8.
    Roussel, N.: Steady and transient flow behaviour of fresh cement pastes. Cement and Concrete Research 35, 1656–1664 (2005)CrossRefGoogle Scholar
  9. 9.
    Banfill, P.F.G., Saunders, D.C.: On the viscosimetric examination of cement pastes. Cement and Concrete Research 11, 363–370 (1981)CrossRefGoogle Scholar
  10. 10.
    Otsubo, Y., Miyai, S., Umeya, K.: Time-dependant flow of cement pastes. Cement and Concrete Research 10, 631–638 (1980)CrossRefGoogle Scholar
  11. 11.
    Tattersall, G.H., Banfill, P.F.G.: The Rheology of Fresh Concrete, ch. 2 and 16. Pitman Books Limited, Great Britain (1983)Google Scholar
  12. 12.
    Banfill, P.F.G.: The Rheology of Fresh Mortar. Mag. Concr. Res. 43(154), 13–21 (1991)CrossRefGoogle Scholar
  13. 13.
    Banfill, P.F.G., Saunders, D.C.: On the Viscometric Examination of Cement Pastes. Cem. Concr. Res. 11(3), 363–370 (1981)CrossRefGoogle Scholar
  14. 14.
    Banfill, P.F.G.: The rheology of fresh cement and concrete — a review. In: Grieve, G., Owens, G. (eds.) Proc. of the 11th International Congress on the Chemistry of Cement: Cement’s Contribution to the Development in the 21st Century, Durban, May 11-16, pp. 11–16 (2003)Google Scholar
  15. 15.
    Wallevik, J.E.: Rheological properties of cement paste: thixotropic behavior and structural breakdown. Cement and Concrete Research 39, 14–29 (2009)CrossRefGoogle Scholar
  16. 16.
    Farris, R.J.: Prediction of the viscosity of multi modal suspensions from viscosity dada. Transactions of the Society of the Rheology 12(2), 281–301 (1968)CrossRefGoogle Scholar
  17. 17.
    Flatt, R.: Towards a prediction of superplasticized concrete rheology. Materials and Structures 27(269), 289–300 (2004)CrossRefGoogle Scholar
  18. 18.
    Toutou, Z., Roussel, N.: Multi scale experimental study of concrete rheology: from water scale to gravel scale. Materials and Structures 39(2), 189–199 (2006)Google Scholar
  19. 19.
    Krieger, I.M., Dougherty, T.J.: A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152 (1959)CrossRefGoogle Scholar
  20. 20.
    Geiker, M.R., Brandl, M., Thrane, L.N., Nielsen, L.F.: On the effect of coarse aggregates fraction and shape on the rheological properties of Self Compacting Concrete. Cement, Concrete and Aggregates 24(1), 3–6 (2002)CrossRefGoogle Scholar
  21. 21.
    Mahaut, F., Mokeddem, S., Chateau, X., Roussel, N., Ovarlez, G.: Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cement and Concrete Research 38, 1276–1285 (2008)CrossRefGoogle Scholar
  22. 22.
    de Larrard, F.: Concrete mixture proportioning. E & FN Spon, London (1999)Google Scholar
  23. 23.
    Krell, J.: Die Konsistenz von Zementleim, Mörtel, und Beton und ihre zeitliche Veränderung, PhD-thesis, Faculty of Civil Engineering, Rheinisch-Westfälische Technische Hochschule Aachen (1985) (in German)Google Scholar
  24. 24.
    Maeyama, A., Maruyama, K., Midorikawa, T., Sakata, N.: Characterization of Powder for Self-Compacting Concrete. In: Ozawa, Ouchi (eds.) Second Int. Workshop on SCC, Kochi. Concrete Engineering Series, vol. (30), pp. 191–200. Japan Society of Civil Engineers (1998)Google Scholar
  25. 25.
    Midorikawa, T., Pelova, G.I., Walraven, J.C.: Application of “The Water-layer Model” to self-compacting mortar with different size distribution of fine aggregate. In: Ozawa, Ouchi (eds.) Second Int. Symposium on SCC, pp. 237–246. University of Tokyo, COMS Engineering Publication (2001)Google Scholar
  26. 26.
    Maruya, E., Osaki, M., Igarashi, H.: Relationship between rheological constant of cement paste and fluidity of high-fluidity concrete. Journal of Advanced Concrete Technology 4(2), 251–257 (2006)CrossRefGoogle Scholar
  27. 27.
    Perdersen, B., Smeplass, S.: The relationship between the rheological properties of SCC and the corresponding matrix phase. In: Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete (RILEM PRO33, 2003), Reykjavik, Iceland, pp. 23–31 (2003)Google Scholar
  28. 28.
    Wallevik, J.E.: Relationship between the Bingham parameters and slump. Cement and Concrete Research 36, 1214–1221 (2006)CrossRefGoogle Scholar
  29. 29.
    Wallevik, J.E.: Rheology of Particle Suspensions - Fresh Concrete, Mortar and Cement Paste with Various Types of Lignosulfonates (Ph.D.-thesis); Department of Structural Engineering, The Norwegian University of Science and Technology (2003) ISBN 82-471-5566-4, ISSN 0809-103XGoogle Scholar
  30. 30.
    Yammine, J., Chaouche, M., Guerinet, M., Moranville, M., Roussel, N.: From ordinary rheology concrete to self compacting concrete: a transition between frictional and hydrodynamic interactions. Cement and Concrete Research 38, 890–896 (2008)CrossRefGoogle Scholar
  31. 31.
    Onoda, G.Y., Liniger, E.G.: Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990)CrossRefGoogle Scholar
  32. 32.
    Mansoutre, S., Colombet, P., Van Damme, H.: Water retention and granular rheological behaviour of fresh C3S paste as function of concentration. Cement and Concrete Research 29, 1441–1453 (1999)CrossRefGoogle Scholar
  33. 33.
    Lootens, D., Hébraud, P., Lécolier, E., Van Damme, H.: Gelation, Shear-Thinning and Shear-Thickening in Cement Slurries. Oil & Gas Science and Technology – Rev. IFP 59(1), 31–40 (2004)CrossRefGoogle Scholar
  34. 34.
    Ovarlez, G., Bertrand, F., Rodts, S.: Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J. Rheol. 50, 259–292 (2006)CrossRefGoogle Scholar
  35. 35.
    Oh, S.G., Noguchi, T., Tomosawa, F.: Towards mix design for rheology of self-compacting concrete. In: Skarendahl, Petersson (eds.) First Int. Symposium on SCC, Stockholm, pp. 361–372. RILEM Publications PRO 7, Cachan (1999)Google Scholar
  36. 36.
    Denis, A., Attar, A., Breysse, D., Chauvin, J.J.: Effect of coarse aggregate on the workability of sandcrete. Cem. Concr. Res. 32(5), 701–706 (2002)CrossRefGoogle Scholar
  37. 37.
    Chanvillard, G., Basuyaux, O.: Une méthode de formulation des bétons de sable à maniabilité et résistance fixées. Bulletin de Liaison des Laboratoires des Ponts et Chaussées, N° 205, 49–63 (1996)Google Scholar
  38. 38.
    Garboczi, E.J., Bentz, D.P.: Analytical formulas for interfacial transition zone properties. Advanced Cement-Based Materials 6, 99–108 (1997)CrossRefGoogle Scholar
  39. 39.
    Saak, A.W., Jenning, H., Shah, S.: New methodology for designing self-compacting concrete. ACI Materials Journal 98(6), 429–439 (2001)Google Scholar
  40. 40.
    Roussel, N.: A theoretical frame to study stability of fresh concrete. Materials and Structures 39(1), 81–91 (2006)MathSciNetGoogle Scholar
  41. 41.
    Cussigh, F., Sonebi, M., De Schutter, G.: Project testing SCC-segregation test methods. In: Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete (RILEM PRO33, 2003), Reykjavik, Iceland, pp. 311–322 (2003)Google Scholar
  42. 42.
    Daczko, J.A.: A comparison of passing ability test methods for self consolidating concrete. In: Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete (RILEM PRO33, 2003), Reykjavik, Iceland, pp. 335–344 (2003)Google Scholar
  43. 43.
    Tregger, N., Ferrara, L., Shah, S.P.: Predicting dynamic segregation resistance of self-consolidating concrete from the slump-flow test. Journal ASTM 7(1) (January 2010)Google Scholar
  44. 44.
    Wallevik, O.: Rheology – a scientific approach to develop self-compacting concrete. In: Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete (RILEM PRO33, 2003), Reykjavik, Iceland, pp. 23–31 (2003)Google Scholar
  45. 45.
    Nguyen, T.L.H., Roussel, N., Coussot, P.: Correlation between L-box test and rheological parameters of an homogeneous yield stress fluid. Cem. Concr. Res. 36(10), 1789–1796 (2006)CrossRefGoogle Scholar
  46. 46.
    Tam, C.T., Shein, A.M.M., Ong, K.C.G., Chay, C.Y.: Modified J-ring approach for assessing passing ability of SCC. In: Proceedings of SCC 2005. Published by Hanley Wood (2005)Google Scholar
  47. 47.
    Ng, I.Y.T., Wong, H.H.C., Kwan, A.K.H.: Passing ability and segregation stability of self-consolidating concrete with different aggregate proportions. Magazine of Concrete Research 58(6), 447–457 (2006)CrossRefGoogle Scholar
  48. 48.
    Roussel, N., Nguyen, T.L.H., Coussot, P.: General probabilistic approach of filtration process. Physical Review Letter 98(11), 114502 (2007)CrossRefGoogle Scholar
  49. 49.
    Grünewald, S., Walraven, J.C., Emborg, M., Carlswärd, J., Hedin, C.: Evaluation of test methods for filling ability of SCC. In: 2005 SCC Conference, China (2005)Google Scholar
  50. 50.
    Kooiman, A.G.: Modeling steel fiber reinforced concrete for structural design. PhD thesis, Stevin Laboratory, Delft University of Technology (2000)Google Scholar
  51. 51.
    Markovic, I.: High-performance hybrid-fiber concrete – development and utilisation. PhD thesis, Department of Underground Infrastructure, Delft University of Technology (2006)Google Scholar
  52. 52.
    Stähli, P., van Mier, J.G.M.: Manufacturing, fiber anisotropy and fracture of hybrid fiber concrete. Engineering Fracture Mechanics 74(1-2), 223–242 (2007)CrossRefGoogle Scholar
  53. 53.
    Folgar, F., Tucker, C.L.: Orientation Behavior of Fibers in Concentrated Suspensions. Journal of Reinforced Plastics and Composites 3, 98–119 (1984)CrossRefGoogle Scholar
  54. 54.
    Ferrara, L., Ozyurt, N., di Prisco, M.: High mechanical performance of fiber reinforced cementitious composites: the role of “casting-flow” induced fiber orientation. Accepted for publication in Materials and Structures (January 5, 2010)Google Scholar
  55. 55.
    Jeffrey, G.: The motion of ellipsoid particles immersed in a viscous fluid. Proc. R. Soc. London A102, 161 (1923)Google Scholar
  56. 56.
    Roussel, N.: A thixotropy model for fresh fluid concretes: theory, validation and applications. Cement and Concrete Research 36(10), 1797–1806 (2006)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Jarny, S., Roussel, N., Rodts, S., Bertrand, F., Le Roy, R., Coussot, P.: Rheological behavior of cement pastes from MRI Velocimetry. Cement and Concrete Research 35, 1873–1881 (2005)CrossRefGoogle Scholar
  58. 58.
    Roussel, N., Cussigh, F.: Distinct-layer casting of SCC: the mechanical consequences of thixotropy. Cement and Concrete Research 38, 624–632 (2008)CrossRefGoogle Scholar
  59. 59.
    Libessart, L.: Influence des composées chimiques des agents de démoulage sur l’interface coffrage/béton – Impact sur l’esthétique des parements en béton. Thesis, Artois University (2006) (in French)Google Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Nicolas Roussel
    • 1
  • Annika Gram
    • 2
  1. 1.Université Paris Est., IFSTTARMarne-la-Vallée Cedex 2France
  2. 2.CBI, Swedish Cement and Concrete InstituteStockholmSweden

Personalised recommendations