Advertisement

Computational Fluid Dynamics

  • Lars Thrane
  • Ana Bras
  • Paul Bakker
  • Wolfgang Brameshuber
  • Bogdan Cazacliu
  • Liberato Ferrara
  • Dimitri Feys
  • Mette Geiker
  • Annika Gram
  • Steffen Grünewald
  • Samir Mokeddem
  • Nicolas Roquet
  • Nicolas Roussel
  • Surendra Shah
  • Nathan Tregger
  • Stephan Uebachs
  • Frederick Van Waarde
  • Jon Elvar Wallevik
Chapter
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 15)

Abstract

In many industries where the manufacturing process involves casting of a fluid or a suspension, it is essential to have tools predicting the flow and the possible subsequent hardening process for mould design and process planning. Trial and error may be applied to optimize the casting process when a large number of small samples are produced. However, when casting concrete, especially in-situ, trial and error is rarely an option and full control of the casting process is important. Otherwise, problems such as incomplete form filling, segregation, blocking, poor encapsulation of reinforcement, poor surface finish, and cold joints may be the outcome.

Keywords

Computational Fluid Dynamics Standard Test Method Fresh Concrete Plastic Viscosity Self Compact Concrete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malvern, L.E.: Introduction to the Mechanics of Continuous Medium. Prentice-Hall Inc., New Jersey (1969)Google Scholar
  2. 2.
    Mase, G.E.: Schaums Outline Series: Theory and Problems of Continuum Mechanics, McGraw–Hill Inc., USA (1970)Google Scholar
  3. 3.
    Wendt, J.F.: Computational Fluid Dynamics, An Introduction. Springer (1992)Google Scholar
  4. 4.
    Anderson, J.D.: Computational Fluid Dynamics: The Basics With Applications. Science/Engineering/Math. McGraw-Hill Science (1995) ISBN 0070016852Google Scholar
  5. 5.
    Hess, J.L., Smith, A.M.O.: Calculation of Potential Flow About Arbitrary Bodies. Progress in Aeronautics Sciences 8, 1–138 (1967), doi:10.1016/0376-0421(67)90003-6CrossRefzbMATHGoogle Scholar
  6. 6.
    Forrester, T., Johnson, E.N., Tinoco, N., Yu, J.: Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle. Computers & Fluids 34, 1115–1151 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kotas, P., Tutum, C.C., Šnajdrova, O., Thorborg, J., Hattel, J.: A Casting Yield Optimization Case Study: Forging Ram. International Journal of Metal Casting 4(4) (2010)Google Scholar
  8. 8.
    Roussel, N.: A thixotropy model for fresh fluid concretes: theory, validation and applications. Cem. Concr. Res. 36, 1797–1806 (2006)CrossRefGoogle Scholar
  9. 9.
    Wallevik, J.E.: Rheological properties of cement paste: thixotropic behavior and structural breakdown. Cem. Concr. Res. 39, 14–29 (2009)CrossRefGoogle Scholar
  10. 10.
    Roussel, N., Geiker, M.R., Dufour, F., Thrane, L.N., Szabo, P.: Computational modeling of concrete flow: General overview. Cem. Concr. Res. 37, 1298–1307 (2007)CrossRefGoogle Scholar
  11. 11.
    Barnes, H.A., Hutton, J.F., Walters, K.: An Introduction to Rheology. Elsevier Science, Amsterdam (1989)Google Scholar
  12. 12.
    Langtangen, H.P.: Computational Partial Differential Equations, Numerical Methods and Diffpack Programming. Lecture Notes in Computational Science and Engineering. Springer, Berlin (1999)zbMATHGoogle Scholar
  13. 13.
    Tanner, R.I., Walters, K.: Rheology: An Historical Perspective, Elsevier Science B.V., Netherlands (1998)Google Scholar
  14. 14.
    Irgens, F.: Continuum Mechanics. Springer, Berlin (2008)Google Scholar
  15. 15.
    Oldroyd, J.G.: A Rational Formulation of the Equations of Plastic Flow for a Bingham Solid. Proc. Camb. Philos. Soc. 43, 100–105 (1947)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Roussel, N.: Steady and transient flow behaviour of fresh cement pastes. Cem. Concr. Res. 35, 1656–1664 (2005)CrossRefGoogle Scholar
  17. 17.
    Roussel, N.: From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests. Cement and Concrete Research 35, 817–822 (2005)CrossRefGoogle Scholar
  18. 18.
    Tatersall, G.H., Banfill, P.G.F.: The Rheology of Fresh Concrete. Pitman, London (1983)Google Scholar
  19. 19.
    Roussel, N.: Rheology of fresh concrete: from measurements to predictions of casting processes. Materials and Structures 40(10), 1001–1012 (2007)CrossRefGoogle Scholar
  20. 20.
    Hu, C., de Larrard, F.: The rheology of fresh high performance concrete. Cem. Concr. Res. 26, 283–294 (1996)CrossRefGoogle Scholar
  21. 21.
    Roussel, N.: Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results. Materials and Structures 39(4), 501–509 (2006)Google Scholar
  22. 22.
    Roussel, N., Coussot, P.: Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. Journal of Rheology 49(3), 705–718 (2005)CrossRefGoogle Scholar
  23. 23.
    Thrane, L.N., Szabo, P., Geiker, M., Glavind, M., Stang, H.: Simulation of the test method “L-Box” for Self-Compacting Concrete. Annual Trans. of the Nordic Rheology Society 12, 47–54 (2004)Google Scholar
  24. 24.
    Nguyen, T.L.H., Roussel, N., Coussot, P.: Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid. Cem. Conc. Res. 36(10), 1789–1796 (2006)CrossRefGoogle Scholar
  25. 25.
    Roussel, N.: The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC. Materials and Structures 40(9), 889–896 (2007)CrossRefGoogle Scholar
  26. 26.
    Poiseuille, J.L.M.: Recherches experimental sur le movement des liquids dans les tubes de très-petits diameters. CR Acad. Sci. Paris 11, 961–967 and 1041–1049 (1840); CR Acad. Sci. Paris 12, 112–115 (1841) (in French)Google Scholar
  27. 27.
    Macosko, C.W.: Rheology, Principles, Measurements and Applications. Wiley-VCH, New York (1994)Google Scholar
  28. 28.
    Feys, D., Verhoeven, R., De Schutter, G.: Extension of the Poiseuille Formula for Shear-thickening Materials and Application to Self-compacting Concrete. Appl. Rheol. 18, 62705:1–62705:11 (2008)Google Scholar
  29. 29.
    Feys, D.: Interactions between rheological properties and pumping of Self-Compacting Concrete, Ph-D Thesis, Ghent University, Ghent (2009)Google Scholar
  30. 30.
    Kaplan, D.: Pumping of concretes, Ph-D Thesis, LCPC, Paris (2001) (in French)Google Scholar
  31. 31.
    Chapdelaine, F.: Fundamental and practical study on pumping of concrete, Ph-D Thesis, Université Laval, Laval (2007) (in French)Google Scholar
  32. 32.
    Thrane, L.N.: Form-filling with Self-Compacting Concrete, Ph-D Thesis, Danish Technological Institute – Technical University of Denmark, Lyngby (2007)Google Scholar
  33. 33.
    Anderson, J.D.: Computational Fluid Dynamics: The basics with applications, 545 pages. Mcgraw Hills (1995) ISBN 00700116852Google Scholar
  34. 34.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 400 pages. Springer (1999) ISBN, 3540653732Google Scholar
  35. 35.
    Chung, T.J.: Computational Fluid Dynamics, 2nd edn., 1029 pages. Cambridge University Press (2010) ISBN, 978-0-521-76969-3Google Scholar
  36. 36.
    Donea, J., Huerta, A., Ponthot, J.-P., Rodrıguez-Ferran, A.: Arbitrary Lagrangian–Eulerian Methods, Encyclopedia of Computational Mechanics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Fundamentals, vol. 1, John Wiley & Sons, Ltd. (2004) ISBN: 0-470-84699-2Google Scholar
  37. 37.
    Hirt, C., Nichols, B.: Volume of fluid (vof) method for the dynamics of free boundaries. Journal of Computational Physics 39(1), 201–225 (1981)CrossRefzbMATHGoogle Scholar
  38. 38.
    Cremonesi, M., Frangi, A., Perego, U.: A lagrangian finite element method for fluid-structure interaction problems with free surface flows. In: Fifth MIT Conference, June 17-19. Massachusetts Institute of Technology, Cambridge (2009)Google Scholar
  39. 39.
    Mori, H., Tanigawa, Y.: Simulation methods for fluidity of fresh Concrete, Memoirs of the School of Engineering, vol. 44, pp. 71–133. Nagoya University (1992)Google Scholar
  40. 40.
    Kurokawa, Y., Tanigawa, Y., Mori, H., Nishinosono, Y.: Analytical study on effect of volume fraction of coarse aggregate on Bingham’s constants of fresh concrete. Transactions of the Japan Concrete Institute 18, 37–44 (1996)Google Scholar
  41. 41.
    Christensen, G.: Modelling the flow of fresh concrete: The slump test, Phd thesis, Princeton University (1991)Google Scholar
  42. 42.
    Thrane, L.N., Szabo, P., Geiker, M., Glavind, M., Stang, H.: Simulation and verification of flow in SCC test methods. In: Proc. of the 4th Int. RILEM Symp. on SCC, Chicago (2005)Google Scholar
  43. 43.
    Uebachs, S., Brameshuber, W.: Numerical Simulation of the Flow Behaviour of Self-Compacting Concretes Using Fluid Mechanical Methods. In: SCC 2005, Conference Proceedings, The Second North American Conference on the Design and Use of Self-Consolidating Concrete (SCC) and the Fourth International RILEM Symposium on Self-Compacting Concrete, Chicago, Illinois, October 30-November 02, vol. 2. Center for Advanced Cement-Based Materials, Evanston (2005)Google Scholar
  44. 44.
    Uebachs, S., Brameshuber, W.: Investigations of the Fluid Structure Interac-tion on the Flow Behaviour of Self Compacting Concrete Regarding the Numerical Flow Simulation. In: Schutter de, G., Boel, V. (eds.) 5th International RILEM Symposium on Self-Compacting Concrete, SCC 2007, Ghent, Belgium, September 3-5, vol. 1, pp. S.429–S.435. RILEM Publications, Bagneux (2007)Google Scholar
  45. 45.
    Tregger, N., Ferrara, L., Shah, S.P.: Identifying cement rheological properties from the mini-slump-flow test. ACI Materials Journal 105(6), 558–566 (2008)Google Scholar
  46. 46.
    Waarde, F.V.:: Formwork pressures when casting self compacting concrete, Master thesis, Delft University of Technology, Department of Structural and Building Engineering (2007)Google Scholar
  47. 47.
    Waarde, F., Koenders, E.A.B., Lycklamaà Nijeholt, J.A., Walraven, J.C.: Theoretical and practical investigations on SCC formwork. In: RILEM-Conference SCC, Ghent (2000, 2007)Google Scholar
  48. 48.
    Gram, A.: Numerical modelling of self-compacting concrete flow – discrete and contiunous approach, lic. thesis Royal Institute of Technology, Sweden (2009)Google Scholar
  49. 49.
    Bras, A.: Grout optimization for masonry consolidation, Dissertation, Universidade Nova de Lisboa, Portugal (waiting for dissertation discussion) (2010)Google Scholar
  50. 50.
    Nguyen, V.H., Rémond, S., Gallias, J.L., Bigas, J.P., Muller, P.: Flow of Herschel–Bulkley fluids through the Marsh cone. Journal of Non-Newtonian Fluid Mechanics 139(1-2), 128–134 (2006)CrossRefzbMATHGoogle Scholar
  51. 51.
    Le Roy, R., Roussel, N.: The Marsh Cone as a viscosimeter: Theo-retical Analysis and Practical Limits. RILEM Materials and Structure 37, 25–30 (2004)CrossRefGoogle Scholar
  52. 52.
    Roussel, N., Le Roy, R.: The Marsh cone: a test or a rheological apparatus? Cement and Concrete Research 35(5), 823–830 (2005)CrossRefGoogle Scholar
  53. 53.
    Hu, C.: Rheologie des betons fluides, Etudes et Recherches des Laboratoires des Ponts et Chaussees, OA 16, Paris, France, 203 p. (1995)Google Scholar
  54. 54.
    Wallevik, J.E.: Development of Parallel Plate-Based Measuring Sys-tem for the ConTec Viscometer. In: Proceedings of the 3rd International RILEM Symposium on Rheology of Cement Suspensions such as Fresh Concrete, August 19-21. RILEM Publications S.A.R.L., Reykjavik (2009) ISBN: 978-2-35158-091-2Google Scholar
  55. 55.
  56. 56.
    Rivera, C.A., Heniche, M., Takenaka, K., Tanguy, P.A.: Finite element modeling of the laminar and transition flow of the Superblend dual shaft coaxial mixer on parallel computers. Chemical Engineering Science 64, 4442–4456 (2009)CrossRefGoogle Scholar
  57. 57.
    Chevoir, F.: Rhéologie des matériaux granulaires, Congrès Matériaux, Nantes (France), Octobre 18-22, pp. 18–22 (2010)Google Scholar
  58. 58.
    Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92, 161–177 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Xiaoxia, D., Xiaoliang, C.: The iterative penalty method for Stokes equations using Q1-P0 element. Applied Mathematics and Computation 201, 805–810 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Girault, V., Glowinski, R., Lopez, H., Vila, J.P.: A boundary multiplier/fictitious domain method for the steady incompressible Navier-Stokes equation. Numer. Math. 88, 75–103 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Chang, K.S., Kwak, D.Y.: Discontinuous bubble scheme for elliptic problems with jumps in the solution. Comput. Methods Appl. Mech. Engrg. 200, 494–508 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical simulation of Bingham visco-plastic flow: Old and new results. J. Non-newtonian Fluid Mech. 142, 36–62 (2007)CrossRefzbMATHGoogle Scholar
  64. 64.
    Weber, R.: The Transport of Concrete by Pipline, Translated by C. van Amerongen in Cement and Concrete Association Translation 129 (1968)Google Scholar
  65. 65.
    Kitaoji, H., Tanigawa, Y., Mori, H., Kurokawa, Y., Urano, S.: Flow simulation of fresh concrete cast into wall structure by viscoplastic divided space element method. Transactions of the Japan Concrete Institute 16, 45–52 (1996)Google Scholar
  66. 66.
    Wallevik, O.: Rheology – a scientific approach to develop self-compacting concrete. In: Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete, RILEM PRO 33, Reykjavik, Iceland, pp. 23–31 (2003)Google Scholar
  67. 67.
    Roussel, N., Cussigh, F.: Distinct-layer casting of scc: the mechanical conse-quences of thixotropy. Cement and Concrete Research 38, 624–632 (2008)CrossRefGoogle Scholar
  68. 68.
    Ovarlez, G., Roussel, N.: A physical model for the prediction of lateral stress exerted by self-compacting concrete on formwork. RILEM Materials and Structures 39(2), 269–279 (2006)CrossRefGoogle Scholar
  69. 69.
    Roussel, N., Staquet, S., D’aloia Schwarzentruber, L., Le Roy, R., Toutlemonde, F.: SCC casting prediction for the realization of prototype VHPC-precambered composite beams. Materials and Structures 40(9), 877–887 (2007)CrossRefGoogle Scholar
  70. 70.
    de Larrard, F.: La moquette en BHP - Un nouveau concept de couche de roulement. Note Technique, Bulletin des Laboratoires des Ponts et Chaussées (223), 105–110 (1999) (in French)Google Scholar
  71. 71.
    de Larrard, F.: High-Performance Concrete Carpet: a hydraulic flexible wearing course. Part I: design. Scientific Note, International Journal of Road Materials and Pavement Design 6(4), 533–548 (2005)Google Scholar
  72. 72.
    de Larrard, F., Kerzreho, J.-P., Potier, J.-M., Baroin, L., Abdo, J.: High-Performance Concrete Carpet: a hydraulic flexible wearing course. Part II: full-scale testing. Scientific Note, International Journal of Road Materials and Pavement Design 6(4), 549–564 (2005)Google Scholar
  73. 73.
    de Larrard, F.: Moquette BHP - Expérimentations de Saint Quentin 2006-2007 - Autoroute A 26 SANEF - Rapport de synthèse. Convention LCPC/SANEF, 46 p. (Décembre 2007) (in French)Google Scholar
  74. 74.
    Bakker, P.: Grout backfill process of a nuclear waste disposal gallery - A study into the most suitable filling strategy, Master thesis, Delft Univer-sity of Technology, Department of Structural and Building Engineering (2009)Google Scholar
  75. 75.
    Bakker, P., Ramohalli Gopala, V., Lycklamaà Nijeholt, J.A., Koenders, E., Grünewald, S., Walraven, J.: Simulation and Testing of the Grout Backfill Process in a Case-Study Related to a Nuclear Waste Disposal Gallery. In: Design, Production and Placement of Self-Consolidating Concrete. Rilem Bookseries, vol. 1, pp. 197–208 (2010) ISBN: 978-90-481-9663-0Google Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Lars Thrane
    • 1
  • Ana Bras
    • 2
  • Paul Bakker
    • 3
  • Wolfgang Brameshuber
    • 4
  • Bogdan Cazacliu
    • 5
  • Liberato Ferrara
    • 6
  • Dimitri Feys
    • 7
  • Mette Geiker
    • 8
  • Annika Gram
    • 9
  • Steffen Grünewald
    • 10
  • Samir Mokeddem
    • 5
  • Nicolas Roquet
    • 5
  • Nicolas Roussel
    • 5
  • Surendra Shah
    • 11
  • Nathan Tregger
    • 11
  • Stephan Uebachs
    • 4
  • Frederick Van Waarde
    • 10
  • Jon Elvar Wallevik
    • 12
  1. 1.DTI, Danish Technological InstituteCopenhagenDenmark
  2. 2.Universidade Nova de LisboaLisboaPortugal
  3. 3.Van Hattum en BlankenvoortWoerdenThe Netherlands
  4. 4.Institut für Bauforschung AachenIBAC RWTHAachenGermany
  5. 5.IFSTTARMarne la Vallée Cedex 2France
  6. 6.Politecnico di MilanoMilanoItaly
  7. 7.University of SherbrookeSherbrookeCanada
  8. 8.DTU, Danmarks Tekniske UniversitetCopenhagenDenmark
  9. 9.CBI, Swedish Cement and Concrete InstituteStockholmSweden
  10. 10.TU Delft, Technische UniversiteitDelftThe Netherlands
  11. 11.Northwestern UniversityEvanstonUSA
  12. 12.ICI RheocenterInnovation Center IcelandReykjavíkIceland

Personalised recommendations