Advertisement

Simulation of Fresh Concrete Flow Using Discrete Element Method (DEM)

  • Viktor Mechtcherine
  • Annika Gram
  • Knut Krenzer
  • Jörg-Henry Schwabe
  • Claudia Bellmann
  • Sergiy Shyshko
Chapter
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 15)

Abstract

The behaviour of fresh concrete during its mixing, transport, placement, and compaction can ultimately have significant effects on its mechanical performance, durability, surface appearance, and on its other properties after hardening. In concrete construction many problems result from the improper filling of formwork, insufficient de-airing, concrete segregation, etc. The importance of these issues has increased year after year since formwork is becoming continually more complex. Steel reinforcement has become denser, and the range of workability has been considerably broadened by the use of self-compacting concrete (SCC) and other novel concrete materials. Consequently, on the one hand, modern material design must match particular demands resulting from the geometrical and technological conditions to which the material is subjected. On the other hand, the concrete working techniques and, in some cases, the geometry of structures can be optimised in considering the usage of particular concretes with their special rheological properties. So, in order to build concrete structures efficiently and with high quality, the consistency of the fresh concrete should comply with the requirements posed by the structure’s geometry and by the methods of transport, placing, and compaction. Computer simulation of fresh concrete behaviour and the working processes could provide a powerful tool in optimising concrete construction and developing new concrete technologies [1].

Keywords

Discrete Element Method Fresh Concrete Discrete Element Method Simulation Slump Flow Ordinary Concrete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mechtcherine, V., Shyshko, S.: Self-compacting concrete simulation using Distinct Element Method. In: Wallevik, O.H., Kubens, S., Oesterheld, S. (eds.) Proceedings of the 3rd International RILEM Symposium on Rheology of Cement Suspensions such as Fresh Concrete, Reykjavik, Iceland, August 19-21, pp. 171–179. RILEM Publications, Bagneux (2009)Google Scholar
  2. 2.
    Kishino, Y.: Powders and Grains 2001. In: Proceedings of the Fourth Interntional Conference on Micromechanics of Granular Media, Sendaï, Japan, May 21-25, A.A. Balkema Publishers, Lisse (2001)Google Scholar
  3. 3.
    Chu, H., Machida, A., Suzuki, N.: Experimental investigation and DEM simulation of filling capacity of fresh concrete. Transactions of the Japan Concrete Institute 16, 9–14 (1996)Google Scholar
  4. 4.
    Noor, M.A., Uomoto, T.: Three-dimensional discrete element simulation of rheology tests of Self-Compacting Concrete. In: Skarendahl, Å., Petersson, Ö. (eds.) Proceedings of the 1st International RILEM Symposium on Self-Compacting Concrete, Stockholm, Sweden, September 13-14, pp. 35–46. RILEM Publications, Cachan (1999)Google Scholar
  5. 5.
    Petersson, Ö., Hakami, H.: Simulation of SCC – laboratory experiments and numerical modeling of slump flow and L-box tests. In: Ozawa, K., Ouchi, M. (eds.) Proceedings of the 2nd International Symposium on Self-Compacting Concrete, Tokyo, Japan, October 23-25, pp. 79–88. Coms Engineering Corporation, Tokyo (2001)Google Scholar
  6. 6.
    Petersson, Ö.: Simulation of Self-Compacting Concrete – laboratory experiments and numerical modeling of testing methods, J-ring and L-box tests. In: Wallevik, Ó., Níelsson, I. (eds.) Proceedings of the 3rd International RILEM Symposium on Self-compacting Concrete, Reykjavik, Iceland, August 17-20, pp. 202–207. RILEM Publications, Bagneux (2003)Google Scholar
  7. 7.
    Shyshko, S., Mechtcherine, V.: Continuous numerical modelling of concrete from fresh to hardened state. In: Finger-Institut für Baustoffkunde, F.A. (ed.) Tagungsbericht der 16. Internationalen Baustofftagung, Ibausil, Weimar, Germany, September 20-23, vol. 2, pp. 165–172. Bauhaus Universität, Weimar (2006)Google Scholar
  8. 8.
    Mechtcherine, V., Shyshko, S.: Virtual concrete laboratory – Continuous numerical simulation of concrete behaviour from fresh to hardened state. In: Grosse, C.U. (ed.) Advances in Construction Materials, pp. 479–488. Springer, Berlin (2007)Google Scholar
  9. 9.
    Mechtcherine, V., Shyshko, S.: Simulating the behaviour of fresh concrete using Distinct Element Method. In: De Schutter, G., Boel, V. (eds.) Proceedings of the 5th International RILEM Symposium on Self-Compacting Concrete, SCC 2007, Ghent, Belgium, September 3-5, pp. 467–472. RILEM Publications, Bagneux (2007)Google Scholar
  10. 10.
    Kuch, H., Palzer, S., Schwabe, J.-H.: Anwendung der Simulation bei der Verarbeitung von Gemengen. In: Finger-Institut für Baustoffkunde, F.A. (ed.) Tagungsbericht der 16. Internationalen Baustofftagung, Ibausil, Weimar, Germany, September 20-23, vol. 1, pp. 1321–1327. Bauhaus Universität, Weimar (2006)Google Scholar
  11. 11.
    Schwabe, J.-H., Kuch, H.: Development and control of concrete mix processing procedures. In: Borghoff, M., Gottschalg, A., Mehl, R. (eds.) Proceedings of the 18th BIBM International Congress and Exhibition, Amsterdam, the Netherlands, Amsterdam, the Netherlands, May 11-14, pp. 108–109. Bond van Fabrikanten van Betonproducten in Nederland, Woerden (2005)Google Scholar
  12. 12.
    Numerical Modelling in Micromechanics via Particle Methods. In: Konietzky, H. (ed.) Proceedings of the 1st International PFC Symposium, Gelsenkirchen, Germany, November 6-8, A.A.Balkema Publishers, Lisse (2002)Google Scholar
  13. 13.
    Shyshko, S., Mechtcherine, V.: Simulating the workability of fresh concrete. In: Schlangen, E., De Schutter, G. (eds.) Proceedings of the International RILEM Symposium of Concrete Modelling, CONMOD 2008, Delft, the Netherlands, May 26-28, pp. 173–181 (2008)Google Scholar
  14. 14.
    Itasca Consulting Group Inc.: PFC 2D. Version 3.0. ICG, Minneapolis (2002)Google Scholar
  15. 15.
    Gram, A., Silfwerbrand, J.: Numerical simulation of fresh SCC flow: applications. Materials and Structures, vol. 44, pp. 805–813 (2011)Google Scholar
  16. 16.
    Gram, A.: Numerical Modelling of Self-Compacting Concrete Flow - Discrete and Continuous Approach. Licentiate thesis, Royal Institute of Technology, Stockholm (2009)Google Scholar
  17. 17.
    Chu, H., Machida, A.: Numerical simulation of fluidity behaviour of fresh concrete by 2D distinct element method. Transactions of the Japan Concrete Institute 18, 1–8 (1996)Google Scholar
  18. 18.
    Cundall, P.A., Konietzky, H., Potyondy, D.O.: PFC – Ein Neues Werkzeug Für Numerische Modellierungen. Bautechnik 73(8), 492–498 (1996)Google Scholar
  19. 19.
    Malkin, A.Y., Isayev, A.I.: Rheology - Concepts, methods & applications. ChemTec Publishing, Toronto (2006)Google Scholar
  20. 20.
    Macosko, C.W.: Rheology principles, measurements and applications. Wiley-VCH, New York (1994)Google Scholar
  21. 21.
    Roussel, N.: Three-dimensional numerical simulations of slump tests. Annual Transactions of the Nordic Rheology Society 12, 55–62 (2004)Google Scholar
  22. 22.
    Krenzer, K., Schwabe, J.-H.: Calibration of parameters for particle simulation of building materials, using stochastic optimization procedures. In: Wallevik, O.H., Kubens, S., Oesterheld, S. (eds.) Proceedings of the 3rd International RILEM Symposium on Rheology of Cement Suspensions such as Fresh Concrete, Reykjavik, Iceland, August 19-21, RILEM Publications, Bagneux (2009)Google Scholar
  23. 23.
    Shyshko, S., Mechtcherine, V.: Simulating fresh concrete behaviour – Establishing a link between the Bingham model and parameters of a DEM-based numerical model. In: Brameshuber, W. (ed.) HetMat – Modelling of Heteroginous Materials. RILEM Proceedings PRO, vol. 76, pp. 211–219. RILEM Publications S.A.R.L. (2010)Google Scholar
  24. 24.
    Roussel, N., Coussot, P.: Fifty-cent rheometer for yield stress measurements - from slump to spreading flow. J. Rheo. 49(3), 705–718 (2005)CrossRefGoogle Scholar
  25. 25.
    Roussel, N., Le Roy, R.: Marsh cone: a test or a rheological apparatus? Cement and Concrete Research 35(5), 823–830 (2005)CrossRefGoogle Scholar
  26. 26.
    Takashima, H., Miyagai, K., Hashida, T., Li, V.C.: A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding. Eng. Fract. Mech. 70(7-8), 853–870 (2003), doi:10.1016/S0013-7944(02)00154-6CrossRefGoogle Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Viktor Mechtcherine
    • 1
  • Annika Gram
    • 2
  • Knut Krenzer
    • 3
  • Jörg-Henry Schwabe
    • 4
  • Claudia Bellmann
    • 1
  • Sergiy Shyshko
    • 1
  1. 1.Institute of Construction MaterialsTechnische Universität DresdenDresdenGermany
  2. 2.Swedish Cement and Concrete Research Institute CBIStockholmSweden
  3. 3.Institut für Angewandte Bauforschung Weimar gGmbHWeimarGermany
  4. 4.University of Applied ScienceJenaGermany

Personalised recommendations