Advertisement

Advanced Methods and Future Perspectives

  • Ksenija Vasilic
  • Mette Geiker
  • Jesper Hattel
  • Laetitia Martinie
  • Nicos Martys
  • Nicolas Roussel
  • Jon Spangenberg
Chapter
  • 1.6k Downloads
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 15)

Abstract

The one-phase methods described in Chapter 2 were shown to be able to predict casting to some extent, but could not depict segregation, sedimentation and blockage occurring during flow. On the other hand, the distinct element methods described in Chapter 3 did not take into account the presence of two phases in the system and describes concrete as distinct elements interacting through more or less complex laws. A reliable numerical model of a multiphase material behaviour shall take into account both phases (solid and liquid). From the numerical point of view, concrete flow shall be seen therefore as the free surface flow of a highly-concentrated suspension of rigid grains.

Keywords

Shear Rate Smooth Particle Hydrodynamic Dissipative Particle Dynamic Plastic Viscosity Self Compact Concrete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sulsky, D., Schreyer, H.: Antisymmetric form of the material point method with applications to upsetting and Taylor impact problem. Comp. Meth. in Applied Mech. Eng. 139, 409–429 (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Moresi, L., Dufour, F., Mühlhaus, H.B.: A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J. of Comp. Phys. 184(2), 476–497 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dufour, F., Pijaudier-Cabot, G.: Numerical modeling of concrete flow: homogeneous approach. Int. J. for Num. And Anal. Meth. in Geomechanics 29(4), 395–416 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Modigell, M., Vasilic, K., Brameshuber, W., Uebachs, S.: Modelling and Simulation of the Flow Behaviour of Self-Compacting Concrete. In: Schutter de, G., Boel, V. (eds.) 5th International RILEM Symposium on Self-Compacting Concrete, SCC 2007, Ghent, Belgium, September 3-5., vol. 1, pp. S.387–S.392. RILEM Publications, Bagneux (2007) ISBN 978-2-35158-050-9Google Scholar
  5. 5.
    Modigell, M., Hufschmidt, M., Petera, J.: Two-Phase Simulations as a Development Tool for Thixoforming. Processes Steel Research International 75(9), 513–518 (2004), Larson G.: The structure and rheology of complex fluids. Oxford University Press, New York (1999)Google Scholar
  6. 6.
    Hufschmidt, M., Modigell, M., Petera, J.: Modelling and simulation of forming processes of metallic suspensions under non-isothermal conditions. J. Non-Newtonian Fluid Mech. 134, 16–26 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Petera, J.: A new finite element scheme using the Lagrangian framework for simulation of viscoelastic fluid flows. J. Non-Newtonian Fluid Mec. 103, 1–43 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Martys, N.S.: Study of a dissipative particle dynamics based approach for modeling suspensions. Journal of Rheology 49, 401–424 (2005)CrossRefGoogle Scholar
  9. 9.
    Foss, D.R., Brady, J.F.: Structure, diffusion,and rheology of Brownian suspensions by Stokesian dynamics simulations. J. Fluid Mechanics 407, 167–200 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Martys, N.S., George, W.L., Chun, B., Lootens, D.: A smoothed particle hydrodynamics based fluid model with a spatially dependent viscosity: Application to flow of a suspension with a non-Newtonian fluid matrix (submitted for publication)Google Scholar
  11. 11.
    Martys, N.S.: A classical kinetic theory approach to lattice Boltzmann simulations. International Journal of Modern Physics 12, 1169–1178 (2001)CrossRefGoogle Scholar
  12. 12.
    Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19, 155–160 (1992)CrossRefGoogle Scholar
  13. 13.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanic. Pergamon Press, Oxford (1987)Google Scholar
  14. 14.
    Ferraris, C.: Private communicationGoogle Scholar
  15. 15.
    Spangenberg, J., Roussel, N., Hattel, J.H., Thorborg, J., Geiker, M.R., Stang, H., Skocek, J.: Prediction of flow induced heterogeneities and their consequences in Self Compacting Concrete (SCC). In: Khayat, K., Feys, D. (eds.) Proceedings of SCC 2010, Montreal, Canada. Springer (2010)Google Scholar
  16. 16.
    Jeffery, G.B.: Proceeding of Royal Society A 102, 161–179 (1922)Google Scholar
  17. 17.
    Folgar, F., Tucker, C.F.: J. Reinf. Plast. Comp. 3, 98 (1984)Google Scholar
  18. 18.
    Rahnama, M., Koch, D.L., Shaqfeh, E.S.G.: Phys. Fluids 7(3), 487 (1995)Google Scholar
  19. 19.
    Anczurowski, E., Mason, S.G.: J. Colloïd Interface Sci. 23, 522 (1967)Google Scholar
  20. 20.
    Trevelyan, B.J., Mason, S.G.: J. Colloïd Sci. 6, 354 (1951)Google Scholar
  21. 21.
    Mason, S.G., Manley, R.S.: Proc. Royal Soc., Series A 238, 117 (1957)Google Scholar
  22. 22.
    Harris, J.B., Pittman, J.F.T.: J. Colloïd Interface Sci. 50(2), 280 (1975)Google Scholar
  23. 23.
    Bibbo, M.A., Dinh, S.M., Armstrong, R.C.: J. Rheol. 29(6), 905 (1985)Google Scholar
  24. 24.
    Kameswara Rao, C.V.S.: Cem. Concr. Res. 9, 685 (1979)Google Scholar
  25. 25.
    Dinh, S.M., Armstrong, S.M.: J. Rheol. 28(3), 207 (1984)Google Scholar
  26. 26.
    Bretherton, F.P.: J. Fluid Mechanics 14, 284 (1962)Google Scholar
  27. 27.
    Goldsmith, H.L., Mason, S.G.: Rheology: Theory and Applications, New-York, vol. 4, ch. 2, pp. 85–250 (1967)Google Scholar
  28. 28.
    Lipscomb, G.G., Denn, M.M.: J. Non-Newt. Fluid Mech. 26, 297 (1988)Google Scholar
  29. 29.
    Vincent, M.: PhD-thesis, ENS des Mines de Paris (1984) Google Scholar
  30. 30.
    Taskernam-Kroser, R., Ziabicki, A.: J. Polymer Sciences 1(6), 491 (1963)Google Scholar
  31. 31.
    Martinie, L., Rossi, P., Roussel, N.: Cem. Concr. Res. 40, 226 (2010)Google Scholar
  32. 32.
    Petrich, M.P., Koch, D.L., Cohen, C.: J. Non-Newt. Fluid Mech. 95, 101 (2000)Google Scholar
  33. 33.
    Kooiman, A.G.: PhD-thesis, DTU, Netherlands (2000)Google Scholar
  34. 34.
    Ozyurt, N., Mason, T.O., Shah, S.P.: Cem. Concr. Res. 36, 1653 (2006)Google Scholar
  35. 35.
    Lataste, J.F., Behloul, M., Breysse, D.: Proceedings of the AUGC Symposium, Bordeaux, France (2007)Google Scholar
  36. 36.
    Boulekbache, B., Hamrat, M., Chemrouk, M., Amziane, S.: EJECE (1985)Google Scholar
  37. 37.
    Ozyurt, N., Woo, N.Y., Mason, T.O., Shah, S.P.: ACI Materials Journal. Technical Paper 103(5), 340 (2006)Google Scholar
  38. 38.
    Dupont, D., Vandewalle, L.: Cem. Concr. Comp. 27, 391 (2005)Google Scholar
  39. 39.
    Martinie, L., Roussel, N.: Simple tools for fiber orientation prediction in industrial practice. Cem. Concr. Res. 41, 993–1000 (2010, 2011)Google Scholar
  40. 40.
    Martinie, L.: LCPC, Université Paris-Est. PhD thesis (2010) (in French)Google Scholar
  41. 41.
    Aveston, J., Kelly, A.: J. Mater. Science 8, 352 (1973)Google Scholar
  42. 42.
    Krenchel, H.: In: Neville, A. (ed.), p. 69. The Construction Press, UK (1975)Google Scholar
  43. 43.
    Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann Method for Complex Flows. Annual Review of Fluid Mechanics 42(1), 439–472 (2010)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, N.U.: Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming. Journal of Statistical Physics (2005)Google Scholar
  45. 45.
    Feng, Z., Michaelides, E.: Proteus: a direct forcing method in the simulations of particulate flows. Journal of Computational Physics 202(1), 20–51 (2005)CrossRefzbMATHGoogle Scholar
  46. 46.
    Švec, O., Skoček, J., Stang, H., Olesen, J.F., Poulsen, P.N.: Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method. In: Proceedings of 13th International Congress on the Chemistry of Cement, Madrid (2011)Google Scholar
  47. 47.
    Skoček, J., Švec, O., Spangenberg, J., Stang, H., Geiker, M.R., Roussel, N., Hattel, J.: Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method. In: Proceedings of 13th International Congress on the Chemistry of Cement, Madrid (2011)Google Scholar
  48. 48.
    Nguyen, N.Q., Ladd, A.: Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Physical Review E 66(4), 1–12 (2002)CrossRefGoogle Scholar
  49. 49.
    Švec, O., Skoček, J., Stang, H., Olesen, J.F., Poulsen, P.N.: Fully coupled Lattice Boltzmann simulation of fiber reinforced self compacting concrete flow. In: Proceedings of Computer Methods in Mechanics 2011, Warsaw, Poland (2011)Google Scholar
  50. 50.
    Spangenberg, J., Roussel, N., Hattel, J.H., Stang, H., Skocek, J., Geiker, M.R.: Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids. Accepted for publication in Cem. Concr. Res. (2011)Google Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Ksenija Vasilic
    • 1
  • Mette Geiker
    • 2
  • Jesper Hattel
    • 2
  • Laetitia Martinie
    • 3
  • Nicos Martys
    • 4
  • Nicolas Roussel
    • 3
  • Jon Spangenberg
    • 2
  1. 1.BAM, Bundesanstalt für Materialforschung und–prüfungBerlinGermany
  2. 2.DTU, Danmarks Tekniske UniversitetCopenhagenDenmark
  3. 3.IFSTTARUniversité Paris EstMarne la Vallée Cedex 2France
  4. 4.NIST, National Institute of Standards and TechnologyMarylandUSA

Personalised recommendations