Advertisement

Velocity Estimates for Symmetric Random Walks at Low Ballistic Disorder

  • Clément Laurent
  • Alejandro F. RamírezEmail author
  • Christophe Sabot
  • Santiago Saglietti
Conference paper
  • 313 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 300)

Abstract

We derive asymptotic estimates for the velocity of random walks in random environments which are perturbations of the simple symmetric random walk but have a small local drift in a given direction. Our estimates complement previous results presented by Sznitman in [16] and are in the spirit of expansions obtained by Sabot in [11].

Keywords

Random walk in random environment Asymptotic expansion Green function 

References

  1. 1.
    Berger, N.: Slowdown estimate for ballistic random walk in random environment. J. Eur. Math. Soc. 14(1), 127–174 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berger, N., Drewitz, A., Ramírez, A.F.: Effective polynomial ballisticity condition for random walk in random environment. Commun. Pure Appl. Math. 67, 1947–1973 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bolthausen, E., Sznitman, A.-S., Zeitouni, O.: Cut points and diffusive random walks in random environment. Ann. Inst. H. Poincaré Probab. Statist. 39, 527–555 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Campos, D., Ramírez, A.F.: Asymptotic expansion of the invariant measure for ballistic random walks in random environment in the low disorder regime. Ann. Probab. 45(6B), 4675–4699 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Drewitz, A., Ramírez, A.F.: Selected topics in random walks in random environments. In: Ramírez, A., Ben, A.G., Ferrari, P., Newman, C., Sidoravicius, V., Vares, M. (eds.) Topics in Percolative and Disordered Systems. Springer Proceedings in Mathematics & Statistics, vol. 69, pp. 23–83. Springer, New York (2014)zbMATHGoogle Scholar
  6. 6.
    Fukushima, R., Ramírez, A.F.: New high-dimensional examples of ballistic random walks in random environment. arXiv:1902.08920 (2019)
  7. 7.
    Guerra, E., Ramírez, A.F.: A proof of Sznitman’s conjecture about ballistic RWRE. Accepted in Commun. Pure Appl. Math. arXiv:1809.02011
  8. 8.
    Kalikow, S.: Generalized random walk in a random environment. Ann. Probab. 9, 753–768 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ramírez, A.F.: Random walk in the low disorder ballistic regime. arXiv:1602.06292
  10. 10.
    Ramírez, A.F., Saglietti, S.: New examples of ballistic RWRE in the low disorder regime. arXiv:1808.01523 (2018)
  11. 11.
    Sabot, C.: Ballistic random walks in random environment at low disorder. Ann. Probab. 32(4), 2996–3023 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sabot, C., Tournier, L: Random walks in Dirichlet environment: an overview. arXiv:1601.08219
  13. 13.
    Sznitman, A.-S.: Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. 2(2), 93–143 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sznitman, A.-S.: On a class of transient random walks in random environment. Ann. Probab. 29(2), 724–765 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sznitman, A.-S.: An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Relat. Fields 122(4), 509–544 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sznitman, A.-S.: On new examples of ballistic random walks in random environment. Ann. Probab. 31(1), 285–322 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sznitman, A.-S., Zerner, M.: A law of large numbers for random walks in random environment. Ann. Probab. 27(4), 1851–1869 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Clément Laurent
    • 1
  • Alejandro F. Ramírez
    • 2
    Email author
  • Christophe Sabot
    • 3
  • Santiago Saglietti
    • 4
  1. 1.Institut Stanislas CannesCannesFrance
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Insitut Camille JordanUniversité de Lyon 1LyonFrance
  4. 4.Faculty of Industrial Engineering and ManagementTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations