Advertisement

Front Propagation and Quasi-Stationary Distributions: Two Faces of the Same Coin

  • Pablo GroismanEmail author
  • Matthieu Jonckheere
Conference paper
  • 319 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 300)

Abstract

We analyze the connection between front propagation and quasi-stationary distributions in translation invariant one-dimensional Markov processes. We describe the link between them through the microscopic models known as Branching Brownian Motion with selection and Fleming–Viot.

Keywords

Selection principle Quasi-stationary distributions Branching brownian motion with selection Traveling waves 

Notes

Acknowledgments

We would like to thank the projects UBACyT 2013–2016 20020120100151BA, PICT 2012-2744 “Stochastic Processes and Statistical Mechanics”, and MathAmSud 777/2011 “Stochastic Structure of Large Interactive Systems” for financial support.

References

  1. 1.
    Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asselah, A., Ferrari, P.A., Groisman, P., Jonckheere, M.: Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case. Ann. Inst. Henri Poincaré Probab. Stat. 52(2), 647–668 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asselah, A., Thai, M.-N.: A note on the rightmost particle in a Fleming–Viot process. Preprint arXiv:1212.4168 (2012)
  4. 4.
    Bérard, J., Gouéré, J.B.: Brunet-Derrida behavior of branching-selection particle systems on the line. Commun. Math. Phys. 298(2), 323–342 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berestycki, J., Berestycki, N., Schweinsberg, J.: The genealogy of branching Brownian motion with absorption. Ann. Probab. 41(2), 527–618 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bieniek, M., Burdzy, K., Finch, S.: Non-extinction of a Fleming-Viot particle model. Probab. Theory Relat. Fields 153(1–2), 293–332 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bramson, M., Calderoni, P., De Masi, A., Ferrari, P., Lebowitz, J., Schonmann, R.H.: Microscopic selection principle for a diffusion-reaction equation. J. Statist. Phys. 45(5–6), 905–920 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brunet, É., Derrida, B.: Shift in the velocity of a front due to a cutoff. Phys. Rev. E 56(3 part A), 2597–2604 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brunet, É., Derrida, B.: Effect of microscopic noise on front propagation. J. Statist. Phys. 103(1–2), 269–282 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brunet, É., Derrida, B., Mueller, A.H., Munier, S.: Noisy traveling waves: effect of selection on genealogies. Europhys. Lett. 76(1), 1–7 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brunet, É., Derrida, B., Mueller, A.H., Munier, S.: Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. Phys. Rev. E 76(4), 041104 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Burdzy, K., Holyst, R., Ingerman, D., March, P.: Configurational transition in a Fleming–Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A, Math. Gen. 29(11), 2633–2642 (1996)CrossRefGoogle Scholar
  13. 13.
    Durrett, R., Remenik, D.: Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations. Ann. Probab. 39(6), 2043–2078 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ferrari, P.A., Marić, N.: Quasi stationary distributions and Fleming-Viot processes in countable spaces. Electron. J. Probab. 12(24), 684–702 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937)zbMATHGoogle Scholar
  16. 16.
    Fleming, W.H., Viot, M.: Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28(5), 817–843 (1979)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Grigorescu, I., Kang, M.: Immortal particle for a catalytic branching process. Probab. Theory Relat. Fields 153(1–2), 333–361 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Groisman, P., Jonckheere, M.: Simulation of quasi-stationary distributions on countable spaces. Markov Process. Relat. Fields 19(3), 521–542 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Groisman, P., Jonckheere, M., Martínez, J.: Another branching-selection particle system associated to the f-kpp equation. In preparation Google Scholar
  20. 20.
    Groisman, P., Jonckheere, M.: A note on front propagation and quasi-stationary distributions for one-dimensional Lévy processes. Preprint arXiv:1609.09338 (2013)
  21. 21.
    Iglehart, D.L.: Random walks with negative drift conditioned to stay positive. J. Appl. Probab. 11, 742–751 (1974)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kessler, D.A., Levine, H.: Fluctuation-induced diffusive instabilities. Nature 394, 556–558 (1998)CrossRefGoogle Scholar
  23. 23.
    Kolb, M., Wübker, A.: Geometric ergodicity of a Fleming–Viot interaction particle process with constant drift. Personal communicationGoogle Scholar
  24. 24.
    Kolmogorov, A., Petrovsky, I., Piscounov, N.: Etude de l’equation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique. Bull. Univ. Etat Moscou 1, 1–25 (1937)Google Scholar
  25. 25.
    Kyprianou, A.E.: A note on branching Lévy processes. Stochast. Process. Appl. 82(1), 1–14 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Maillard, P.: Branching brownian motion with selection. Preprint arXiv:1210.3500 (2012)
  27. 27.
    Martinez, S., Picco, P., San Martín, J.: Domain of attraction of quasi-stationary distributions for the Brownian motion with drift. Adv. Appl. Probab. 30(2), 385–408 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Martínez, S., San Martín, J.: Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31(4), 911–920 (1994)MathSciNetCrossRefGoogle Scholar
  29. 29.
    McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28(3), 323–331 (1975)MathSciNetCrossRefGoogle Scholar
  30. 30.
    McKean, H.P.: A correction to: application of Brownian motion to the equation of Kolmogorov-Petrovskiĭ-Piskonov. Comm. Pure Appl. Math. 28(3), 323–331 (1975)MathSciNetCrossRefGoogle Scholar
  31. 31.
    McKean, H.P.: A correction to: application of Brownian motion to the equation of Kolmogorov-Petrovskiĭ-Piskonov. Comm. Pure Appl. Math. 29(5), 553–554 (1976)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Seneta, E., Vere-Jones, D.: On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Probab. 3, 403–434 (1966)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Villemonais, D.: Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift. Electron. J. Probab. 16(61), 1663–1692 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Villemonais, D.: Minimal quasi-stationary distribution approximation for a birth and death process. Electron. J. Probab. 20(30), 1–18 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Departamento de Matemática, FCENUniversidad de Buenos Aires, IMAS-CONICETBuenos AiresArgentina
  2. 2.NYU-ECNU Institute of Mathematical Sciences at NYU ShanghaiShanghaiChina
  3. 3.Instituto de Cálculo, FCENUniversidad de Buenos Aires and IMAS-CONICETBuenos AiresArgentina

Personalised recommendations