Advertisement

Introduction

  • Spandan RoyEmail author
  • Indra Narayan Kar
Chapter
  • 194 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 257)

Abstract

The primary objective of this book is to provide a theoretical background for the development of a new class of adaptive-robust controller with minimal information of the system model. To delineate the goal, this chapter introduces a few important keywords: Euler-Lagrange (EL) systems, adaptive-robust control (ARC), time-delayed control (TDC) (a.k.a artificial delay based control) and the notion of over- and under-estimation problems of switching gain in ARC. These keywords help to garner the central theme of this book as well as the motivation. This chapter begins with a brief discussion regarding why the book concentrates only on EL systems; this is followed by the introduction of ARC and its importance in practical scenario; the third keyword defines how artificial time delay can play beneficial role in the context of ARC, while the last keyword defines an important problem of the existing ARC literature that would be solved in this book.

References

  1. 1.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. control 83(9), 1907–1919 (2010)Google Scholar
  2. 2.
    Shang, W., Cong, S.: Motion control of parallel manipulators using acceleration feedback. IEEE Trans. Control Syst. Technol. 22(1), 314–321 (2014)CrossRefGoogle Scholar
  3. 3.
    Choi, T.-Y., Choi, B.-S., Seo, K.-H.: Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety. IEEE Trans. Control Syst. Technol. 19(4), 832–842 (2011)CrossRefGoogle Scholar
  4. 4.
    Roy, S., Baldi, S.: A simultaneous adaptation law for a class of nonlinearly parametrized switched systems. IEEE Control Syst. Lett. 3(3), 487–492 (2019)CrossRefGoogle Scholar
  5. 5.
    Roy, S., Kar, I.N.: Adaptive-robust control of uncertain Euler-Lagrange systems with past data: a time-delayed approach. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 5715–5720. IEEE (2016)Google Scholar
  6. 6.
    Roy, S., Baldi, S.: On reduced-complexity robust adaptive control of switched euler-lagrange systems. Nonlinear Anal. Hybrid Syst. 34, 226–237 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ye, J., Roy, S., Godjevac, M., Baldi, S.: Observer-based robust control for dynamic positioning of large-scale heavy lift vessels. IFAC-PapersOnLine 52(3), 138–143 (2019)CrossRefGoogle Scholar
  8. 8.
    Fari, S., Wang, X., Roy, S., Baldi, S.: Addressing unmodelled path-following dynamics via adaptive vector field: a uav test case. IEEE Trans. Aerosp. Electron, Syst (2019)Google Scholar
  9. 9.
    Wu, J., Huang, J., Wang, Y., Xing, K.: Nonlinear disturbance observer-based dynamic surface control for trajectory tracking of pneumatic muscle system. IEEE Trans. Control Syst. Technol. 22(2), 440–455 (2014)CrossRefGoogle Scholar
  10. 10.
    Ortega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.: Passivity-Based Control of Euler-Lagrange Systems: Mechanical. Electrical and Electromechanical Applications. Springer Science and Business Media, Berlin (2013)Google Scholar
  11. 11.
    Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2008)Google Scholar
  12. 12.
    Liu, X., Su, H., Yao, B., Chu, J.: Adaptive robust control of a class of uncertain nonlinear systems with unknown sinusoidal disturbances. In: 47th IEEE Conference on Decision and Control, pp. 2594–2599. IEEE (2008)Google Scholar
  13. 13.
    Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control. Prentice-Hall Englewood Cliffs, NJ (1991)zbMATHGoogle Scholar
  15. 15.
    Khalil, H.K., Grizzle, J.: Nonlinear Systems, vol. 3. Prentice hall Upper Saddle River, NJ (2002)Google Scholar
  16. 16.
    Lee, H., Utkin, V.I.: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31(2), 179–188 (2007)CrossRefGoogle Scholar
  17. 17.
    Zhu, X., Tao, G., Yao, B., Cao, J.: Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy. IEEE/ASME Trans. Mechatron. 13(4), 441–450 (2008)zbMATHCrossRefGoogle Scholar
  18. 18.
    Sun, W., Zhao, Z., Gao, H.: Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2013)CrossRefGoogle Scholar
  19. 19.
    Islam, S., Liu, P.X., El Saddik, A.: Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty. IEEE Trans. Ind. Electron. 62(3), 1563–1571 (2015)CrossRefGoogle Scholar
  20. 20.
    Chen, Z., Yao, B., Wang, Q.: \(\mu \)-synthesis-based adaptive robust control of linear motor driven stages with high-frequency dynamics: a case study. IEEE/ASME Trans. Mechatron. 20(3), 1482–1490 (2015)CrossRefGoogle Scholar
  21. 21.
    Liu, Z., Su, H., Pan, S.: A new adaptive sliding mode control of uncertain nonlinear systems. Asian J. Control 16(1), 198–208 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Liu, X., Su, H., Yao, B., Chu, J.: Adaptive robust control of a class of uncertain nonlinear systems with unknown sinusoidal disturbances. In: 47th IEEE Conference on Decision and Control, 2008. CDC 2008, pp. 2594–2599. IEEE (2008)Google Scholar
  23. 23.
    Zhu, X., Tao, G., Yao, B., Cao, J.: Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles. IEEE Trans. Control Syst. Technol. 17(3), 576–588 (2009)CrossRefGoogle Scholar
  24. 24.
    Zhang, G., Chen, J., Lee, Z.: Adaptive robust control for servo mechanisms with partially unknown states via dynamic surface control approach. IEEE Trans. Control Syst. Technol. 18(3), 723–731 (2010)CrossRefGoogle Scholar
  25. 25.
    Guan, C., Pan, S.: Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters. IEEE Trans. Control Syst. Technol. 16(3), 434–445 (2008)CrossRefGoogle Scholar
  26. 26.
    Chen, Z., Yao, B., Wang, Q.: \(\mu \)-synthesis-based adaptive tobust control of linear motor driven stages with high-frequency dynamics: a aase study. IEEE/ASME Trans. Mechatron. 20(3), 1482–1490 (2015)CrossRefGoogle Scholar
  27. 27.
    Chen, C.-Y., Li, T.-H.S., Yeh, Y.-C., Chang, C.-C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronic 19(2), 156–166 (2009)CrossRefGoogle Scholar
  28. 28.
    Khalaji, A.K., Moosavian, S.A.A.: Robust adaptive controller for a tractor-trailer mobile robot. IEEE/ASME Trans. Mechatron. 19(3), 943–953 (2014)CrossRefGoogle Scholar
  29. 29.
    Meng, Q., Zhang, T., Gao, X., Song, J.-Y.: Adaptive sliding mode fault-tolerant control of the uncertain stewart platform based on offline multibody dynamics. IEEE/ASME Trans. Mechatron. 19(3), 882–894 (2014)CrossRefGoogle Scholar
  30. 30.
    Nasiri, A., Nguang, S.K., Swain, A.: Adaptive sliding mode control for a class of mimo nonlinear systems with uncertainties. J. Franklin Inst. 351(4), 2048–2061 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Liu, S., Zhou, H., Luo, X., Xiao, J.: Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems. J. Franklin Inst. 353(1), 180–199 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: Sliding mode control with gain adaptation-application to an electropneumatic actuator. Control Eng. Pract. 21(5), 679–688 (2013)CrossRefGoogle Scholar
  33. 33.
    Nasiri, A., Nguang, S.K., Swain, A., Almakhles, D.: Passive actuator fault tolerant control for a class of mimo non-linear systems with uncertainties. Int. J. Control 92(3), 693–704 (2019)zbMATHCrossRefGoogle Scholar
  34. 34.
    Mobayen, S.: An adaptive chattering-free pid sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems. Nonlinear Dyn. 82(1–2), 53–60 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Moreno, J.A., Negrete, D.Y., Torres-González, V., Fridman, L.: Adaptive continuous twisting algorithm. Int. J. Control 89(9), 1798–1806 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Robust path tracking control of nonholonomic wheeled mobile robot: experimental validation. Int. J. Control Autom. Syst. 13(4), 897–905 (2015)CrossRefGoogle Scholar
  38. 38.
    Roy, S., Roy, S.B., Lee, J., Baldi, S.: Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans. Mechatron. (2019)Google Scholar
  39. 39.
    Roy, S., Roy, S.B., Kar, I.N.: Adaptive-robust control of Euler-Lagrange systems with linearly parametrizable uncertainty bound. IEEE Trans. Control Syst. Technol. 26(5), 1842–1850 (2018)CrossRefGoogle Scholar
  40. 40.
    Roy, S., Roy, S.B., Kar, I.N.: A new design methodology of adaptive sliding mode control for a class of nonlinear systems with state dependent uncertainty bound. In: 15th International Workshop on Variable Structure Systems (VSS), pp. 414–419. IEEE (2018)Google Scholar
  41. 41.
    Villafuerte, R., Mondié, S., Garrido, R.: Tuning of proportional retarded controllers: theory and experiments. IEEE Trans. Control Syst. Technol. 21(3), 983–990 (2013)CrossRefGoogle Scholar
  42. 42.
    Ramírez, A., Mondié, S., Garrido, R., Sipahi, R.: Design of proportional-integral-retarded (PIR) controllers for second-order systems. IEEE Trans. Autom. Control 61(6), 1688–1693 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Roy, S., Patel, A., Kar, I.N.: Analysis and design of a wide-area damping controller for inter-area oscillation with artificially induced time delay. IEEE Trans. Smart Grid 10(4), 3654–3663 (2019)CrossRefGoogle Scholar
  44. 44.
    Hsia, T., Gao, L.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2070–2075. IEEE (1990)Google Scholar
  45. 45.
    Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control 112, 133 (1990)zbMATHCrossRefGoogle Scholar
  46. 46.
    Cheng, L., Hou, Z.-G., Tan, M.: Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica 45(10), 2312–2318 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Cheng, L., Hou, Z.-G., Tan, M., Zhang, W.-J.: Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design. IEEE Trans. Syst. Man Cybern. B 42(5), 1470–1479 (2012)CrossRefGoogle Scholar
  48. 48.
    Yang, C., Wang, X., Cheng, L., Ma, H.: Neural-learning-based telerobot control with guaranteed performance. IEEE Trans. Cybern. (2016)Google Scholar
  49. 49.
    Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016)CrossRefGoogle Scholar
  50. 50.
    Shin, Y.-H., Kim, K.-J.: Performance enhancement of pneumatic vibration isolation tables in low frequency range by time delay control. J. Sound Vib. 321(3), 537–553 (2009)CrossRefGoogle Scholar
  51. 51.
    Lee, J., Yoo, C., Park, Y.-S., Park, B., Lee, S.-J., Gweon, D.-G., Chang, P.-H.: An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle. Mechatronic 22(2), 184–194 (2012)CrossRefGoogle Scholar
  52. 52.
    Jin, M., Lee, J., Ahn, K.K.: Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Trans. Mechatron. 20(2), 899–909 (2015)CrossRefGoogle Scholar
  53. 53.
    Lee, J.H., Kim, B.J., Kim, J.S., Song, D.S., Lee, M.G., Jho, J.Y., Kim, D.M., Rhee, K., Lee, S.J.: Time-delay control of ionic polymer metal composite actuator. Smart Mater. Struct. 24(4), 047002 (2015)CrossRefGoogle Scholar
  54. 54.
    Roy, S., Nandy, S., Kar, I.N., Ray, R., Shome, S.N.: Robust control of nonholonomic wheeled mobile robot with past information: theory and experiment. Proc. Inst. Mech. Eng. J. Syst. Control Eng. 231(3), 178–188 (2017)Google Scholar
  55. 55.
    Roy, S., Kar, I.N.: Robust time-delayed control of a class of uncertain nonlinear systems. IFAC-PapersOnLine 49(1), 736–741 (2016)CrossRefGoogle Scholar
  56. 56.
    Roy, S., Nandy, S., Shome, S.N., Ray, R.: Robust position control of an autonomous underwater vehicle: a comparative study. In: EEE Conference on Automation Science and Engineering, pp. 1002–1007. IEEE (2013)Google Scholar
  57. 57.
    Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008)CrossRefGoogle Scholar
  58. 58.
    Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)CrossRefGoogle Scholar
  59. 59.
    Lee, J., Dallali, H., Jin, M., Caldwell, D., Tsagarakis, N.: Robust and adaptive whole-body controller for humanoids with multiple tasks under uncertain disturbances. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 5683–5689. IEEE (2016)Google Scholar
  60. 60.
    Mukherjee, J., Roy, S., Kar, I.N., Mukherjee, S.: A double-layered artificial delay-based approach for maneuvering control of planar snake robots. J. Dyn. Syst. Meas. Control 141(4), 1–10 (2019)CrossRefGoogle Scholar
  61. 61.
    Jin, M., Kim, J., Ba, D.X., Park, H.G., Ahn, K.K., Yoon, J.J.: Time delay control of a pump-controlled electro-hydraulic actuator. In: Proceedings 15th IEEE International Conference on Robotics and Automation System, pp. 847–850. IEEE (2015)Google Scholar
  62. 62.
    Kim, Y.-B.: Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control. J. Power Sour. 195(19), 6329–6341 (2010)CrossRefGoogle Scholar
  63. 63.
    Kim, K.-H., Youn, M.-J.: A simple and robust digital current control technique of a PM synchronous motor using time delay control approach. IEEE Trans. Power Electron. 16(1), 72–82 (2001)CrossRefGoogle Scholar
  64. 64.
    Chin, S.-M., Lee, C.-O., Chang, P.H.: An experimental study on the position control of an electrohydraulic servo system using time delay control. Control Eng. Pract. 2(1), 41–48 (1994)CrossRefGoogle Scholar
  65. 65.
    Lee, S.-U., Chang, P.H.: Control of a heavy-duty robotic excavator using time delay control with integral sliding surface. Control Eng. Pract. 10(7), 697–711 (2002)CrossRefGoogle Scholar
  66. 66.
    Jin, M., Lee, J., Tsagarakis, N.G.: Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Trans. Ind. Electron. 64(2), 1706–1715 (2017)CrossRefGoogle Scholar
  67. 67.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Time delay sliding mode control of nonholonomic wheeled mobile robot: experimental validation. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2886–2892. IEEE (2014)Google Scholar
  68. 68.
    Lee, J., Chang, P.H., Jamisola, R.S.: Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Trans. Ind. Electron. 61(7), 3786–3796 (2014)CrossRefGoogle Scholar
  69. 69.
    Han, D.K., Chang, P.-H.: Robust tracking of robot manipulator with nonlinear friction using time delay control with gradient estimator. J. Mech. Sci. Technol. 24(8), 1743–1752 (2010)CrossRefGoogle Scholar
  70. 70.
    Cho, G.R., Chang, P.H., Park, S.H., Jin, M.: Robust tracking under nonlinear friction using time-delay control with internal model. IEEE Trans. Control Syst. Technol. 17(6), 1406–1414 (2009)CrossRefGoogle Scholar
  71. 71.
    Jin, Y., Chang, P.H., Jin, M., Gweon, D.G.: Stability guaranteed time-delay control of manipulators using nonlinear damping and terminal sliding mode. IEEE Trans. Ind. Electron. 60(8), 3304–3317 (2013)Google Scholar
  72. 72.
    Chen, Y., Tung, P., Fuh, C., Liao, C.: The use of a modified sliding-mode controller with time-delay control for unknown systems with uncertain disturbances. J. Syst. Control Eng. 222(1), 31–37 (2008)Google Scholar
  73. 73.
    Kim, J., Joe, H., Yu, S.-C., Lee, J.S., Kim, M.: Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans. Ind. Electron. 63(2), 1052–1061 (2016)CrossRefGoogle Scholar
  74. 74.
    Cho, S.-J., Jin, M., Kuc, T.-Y., Lee, J.S.: Stability guaranteed auto-tuning algorithm of a time-delay controller using a modified nussbaum function. Int. J. Control 87(9), 1926–1935 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Bandyopadhyay, B., Janardhanan, S., Spurgeon, S.K.: Advances in Sliding Mode Control: Concept, Theory and Implementation, vol. 440. Springer, Berlin (2013)zbMATHCrossRefGoogle Scholar
  76. 76.
    Roy, S., Kar, I.N., Lee, J., Jin, M.: Adaptive-Robust time-delay control for a class of uncertain Euler-Lagrange systems. IEEE Trans. Ind. Electron. 64(9), 7109–7119 (2017)CrossRefGoogle Scholar
  77. 77.
    Fridman, E.: Introduction to Time-delay Systems: Analysis and Control. Springer, Berlin (2014)zbMATHCrossRefGoogle Scholar
  78. 78.
    Hale, J.: Theory of Functional Differential Equations (1977)Google Scholar
  79. 79.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jersey (2002)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Robotics Research CenterInternational Institute of Information TechnologyHyderabadIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations