Advertisement

Time-Delayed Control (TDC): Design Issues and Solutions

  • Spandan RoyEmail author
  • Indra Narayan Kar
Chapter
  • 230 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 257)

Abstract

This chapter primarily tries to bridge the pertaining gaps in the literature regarding the design issues of a conventional time-delayed Control (TDC). A Razumikhin-theorem based new stability analysis of TDC is introduced in this chapter that establishes a relation between system stability and the choice of controller gains as well as sampling interval. Especially, the stability analysis allows the continuous-time system to absorb the sampled past data used in time-delayed estimation (TDE) method. Further, the obtained stability result empowers the designer with a range of sampling intervals for fixed choice of controller gains in different application scenarios without violating the system stability. This particular contribution provides a rostrum towards the system applications, which require high sampling intervals due to operational/application constraints. Finally, the design solutions of TDC introduced in this chapter are experimentally validated under various sampling intervals, using ‘PIONEER-3’ wheeled mobile robot.

References

  1. 1.
    Hsia, T., Gao, L.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2070–2075. IEEE (1990)Google Scholar
  2. 2.
    Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control 112, 133 (1990)CrossRefGoogle Scholar
  3. 3.
    Lee, J., Dallali, H., Jin, M., Caldwell, D., Tsagarakis, N.: Robust and adaptive whole-body controller for humanoids with multiple tasks under uncertain disturbances. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 5683–5689. IEEE (2016)Google Scholar
  4. 4.
    Roy, S., Kar, I.N.: Robust time-delayed control of a class of uncertain nonlinear systems. IFAC-PapersOnLine 49(1), 736–741 (2016)CrossRefGoogle Scholar
  5. 5.
    Roy, S., Nandy, S., Shome, S.N., Ray, R.: Robust position control of an autonomous underwater vehicle: a comparative study. In: EEE Conference on Automation Science and Engineering, pp. 1002–1007. IEEE (2013)Google Scholar
  6. 6.
    Roy, S., Nandy, S., Kar, I.N., Ray, R., Shome, S.N.: Robust control of nonholonomic wheeled mobile robot with past information: theory and experiment. Proc. Inst. Mech. Eng. J. Syst. Control Eng. 231(3), 178–188 (2017)Google Scholar
  7. 7.
    Jin, M., Lee, J., Tsagarakis, N.G.: Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Trans. Ind. Electron. 64(2), 1706–1715 (2017)CrossRefGoogle Scholar
  8. 8.
    Jin, M., Lee, J., Ahn, K.K.: Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Trans. Mechatron. 20(2), 899–909 (2015)CrossRefGoogle Scholar
  9. 9.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Time delay sliding mode control of nonholonomic wheeled mobile robot: experimental validation. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2886–2892. IEEE (2014)Google Scholar
  10. 10.
    Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)CrossRefGoogle Scholar
  11. 11.
    Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008)CrossRefGoogle Scholar
  12. 12.
    Lee, J., Chang, P.H., Jamisola, R.S.: Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Trans. Ind. Electron. 61(7), 3786–3796 (2014)CrossRefGoogle Scholar
  13. 13.
    Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016)CrossRefGoogle Scholar
  14. 14.
    Roy. S., Kar, I.N.: Adaptive-robust control of uncertain Euler-Lagrange systems with past data: a time-delayed approach. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 5715–5720. IEEE (2016)Google Scholar
  15. 15.
    Mukherjee, J., Roy, S., Kar, I.N., Mukherjee, S.: A double-layered artificial delay-based approach for maneuvering control of planar snake robots. J. Dyn. Syst. Meas. Control 141(4), 1–10 (2019)CrossRefGoogle Scholar
  16. 16.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Robust path tracking control of nonholonomic wheeled mobile robot: experimental validation. Int. J. Control Autom. Syst. 13(4), 897–905 (2015)CrossRefGoogle Scholar
  17. 17.
    Roy, S., Roy, S.B., Kar, I.N.: Adaptive-robust control of Euler-Lagrange systems with linearly parametrizable uncertainty bound. IEEE Trans. Control Syst. Technol. 26(5), 1842–1850 (2018)CrossRefGoogle Scholar
  18. 18.
    Roy, S., Kar, I.N.: Adaptive sliding mode control of a class of nonlinear systems with artificial delay. J. Franklin Inst. 354(18), 8156–8179 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Roy, S., Lee, J., Baldi, S.: A new continuous-time stability perspective of time-delay control: introducing a state-dependent upper bound structure. IEEE Control Syst. Lett. 3(2), 475–480 (2019)CrossRefGoogle Scholar
  20. 20.
    Roy, S., Roy, S.B., Lee, J., Baldi, S.: Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans, Mechatron. (2019)Google Scholar
  21. 21.
    Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2008)Google Scholar
  22. 22.
    Roy, S., Roy, S.B., Kar, I.N.: A new design methodology of adaptive sliding mode control for a class of nonlinear systems with state dependent uncertainty bound. In: 15th International Workshop on Variable Structure Systems (VSS), pp. 414–419. IEEE (2018)Google Scholar
  23. 23.
    Roy, S., Baldi, S.: A simultaneous adaptation law for a class of nonlinearly parametrized switched systems. IEEE Control Syst. Lett. 3(3), 487–492 (2019)CrossRefGoogle Scholar
  24. 24.
    Roy, S., Kar, I.N.: Adaptive robust tracking control of a class of nonlinear systems with input delay. Nonlinear Dyn. 85(2), 1127–1139 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hale, J.: Theory of Functional Differential Equations (1977)Google Scholar
  26. 26.
    Fridman, E.: Introduction to Time-delay Systems: Analysis and Control. Springer, Berlin (2014)CrossRefGoogle Scholar
  27. 27.
    Coelho, P., Nunes, U.: Path-following control of mobile robots in presence of uncertainties. IEEE Trans. Robot. 21(2), 252–261 (2005)CrossRefGoogle Scholar
  28. 28.
    Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)CrossRefGoogle Scholar
  29. 29.
    Roy, S., Patel, A., Kar, I.N.: Analysis and design of a wide-area damping controller for inter-area oscillation with artificially induced time delay. IEEE Trans. Smart Grid 10(4), 3654–3663 (2019)CrossRefGoogle Scholar
  30. 30.
    Roy, S., Kar, I.N.: Robust control of uncertain Euler-Lagrange systems with time-varying input delay. In: Proceedings of the Advances in Robotics, p. 16. ACM (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Robotics Research CenterInternational Institute of Information TechnologyHyderabadIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations