Adaptive–Robust Approach for Time-Delayed Control of a Class of Uncertain EL Systems

  • Spandan RoyEmail author
  • Indra Narayan Kar
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 257)


To cope with the over- and under-estimation problems of switching gain in the state-of-the-art adaptive-robust control (ARC) designs, this chapter proposes a new ARC strategy, adaptive-robust time-delayed control (ARTDC), for tracking control problem of a class of uncertain EL systems based on the time-delayed estimation (TDE) technique. ARTDC comprises of three parts: a TDE part, a desired dynamics injection part, and an adaptive-robust part. Specifically, the adaptive-robust part provides robustness against the estimation error stemming from the TDE part without the prerequisites of complete knowledge of system model parameters or uncertainty bound. The main feature of the proposed ARTDC is that, compared to the state-of-the-art, it does not involve any threshold value in its ARC law; thus, it allows the switching gain to increase or decrease whenever the error trajectories move away or move close to the switching surface, respectively. Therefore, compared with the existing ARC schemes, ARTDC is able to alleviate the over- and under-estimation problems of switching gain. The proposed method is experimentally validated in comparison with the conventional methods using ‘PIONEER-3’ wheeled mobile robot.


  1. 1.
    Hsia, T., Gao, L.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2070–2075. IEEE (1990)Google Scholar
  2. 2.
    Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control 112, 133 (1990)CrossRefGoogle Scholar
  3. 3.
    Cho, G.R., Chang, P.H., Park, S.H., Jin, M.: Robust tracking under nonlinear friction using time-delay control with internal model. IEEE Trans. Control Syst. Technol. 17(6), 1406–1414 (2009)CrossRefGoogle Scholar
  4. 4.
    Han, D.K., Chang, P.-H.: Robust tracking of robot manipulator with nonlinear friction using time delay control with gradient estimator. J. Mech. Sci. Technol. 24(8), 1743–1752 (2010)CrossRefGoogle Scholar
  5. 5.
    Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008)CrossRefGoogle Scholar
  6. 6.
    Lee, J., Chang, P.H., Jamisola, R.S.: Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Trans. Ind. Electron. 61(7), 3786–3796 (2014)CrossRefGoogle Scholar
  7. 7.
    Jin, Y., Chang, P.H., Jin, M., Gweon, D.G.: Stability guaranteed time-delay control of manipulators using nonlinear damping and terminal sliding mode. IEEE Trans. Ind. Electron. 60(8), 3304–3317 (2013)Google Scholar
  8. 8.
    Lee, S.-U., Chang, P.H.: Control of a heavy-duty robotic excavator using time delay control with integral sliding surface. Control Eng. Pract. 10(7), 697–711 (2002)CrossRefGoogle Scholar
  9. 9.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Time delay sliding mode control of nonholonomic wheeled mobile robot: experimental validation. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2886–2892. IEEE (2014)Google Scholar
  10. 10.
    Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Tung, P., Fuh, C., Liao, C.: The use of a modified sliding-mode controller with time-delay control for unknown systems with uncertain disturbances. J. Syst. Control Eng. 222(1), 31–37 (2008)Google Scholar
  12. 12.
    Kim, J., Joe, H., Yu, S.-C., Lee, J.S., Kim, M.: Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans. Ind. Electron. 63(2), 1052–1061 (2016)CrossRefGoogle Scholar
  13. 13.
    Roy, S., Kar, I.N.: Robust time-delayed control of a class of uncertain nonlinear systems. IFAC-PapersOnLine 49(1), 736–741 (2016)CrossRefGoogle Scholar
  14. 14.
    Roy, S., Nandy, S., Kar, I.N., Ray, R., Shome, S.N.: Robust control of nonholonomic wheeled mobile robot with past information: theory and experiment. Proc. Inst. Mech. Eng. J. Syst. Control Eng. 231(3), 178–188 (2017)Google Scholar
  15. 15.
    Cho, S.-J., Jin, M., Kuc, T.-Y., Lee, J.S.: Stability guaranteed auto-tuning algorithm of a time-delay controller using a modified nussbaum function. Int. J. Control 87(9), 1926–1935 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jin, M., Lee, J., Tsagarakis, N.G.: Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Trans. Ind. Electron. 64(2), 1706–1715 (2017)CrossRefGoogle Scholar
  17. 17.
    Baek, J., Jin, M., Han, S.: A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016)CrossRefGoogle Scholar
  18. 18.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. control 83(9), 1907–1919 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: Sliding mode control with gain adaptation-application to an electropneumatic actuator. Control Eng. Pract. 21(5), 679–688 (2013)CrossRefGoogle Scholar
  20. 20.
    Roy, S., Roy, S.B., Lee, J., Baldi, S.: Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans, Mechatron. (2019)Google Scholar
  21. 21.
    Hsia, T.S., Lasky, T., Guo, Z.: Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Ind. Electron. 38(1), 21–25 (1991)CrossRefGoogle Scholar
  22. 22.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Robust path tracking control of nonholonomic wheeled mobile robot: experimental validation. Int. J. Control Autom. Syst. 13(4), 897–905 (2015)CrossRefGoogle Scholar
  23. 23.
    Chen, C.-Y., Li, T.-H.S., Yeh, Y.-C., Chang, C.-C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronic 19(2), 156–166 (2009)CrossRefGoogle Scholar
  24. 24.
    Khalaji, A.K., Moosavian, S.A.A.: Robust adaptive controller for a tractor-trailer mobile robot. IEEE/ASME Trans. Mechatron. 19(3), 943–953 (2014)CrossRefGoogle Scholar
  25. 25.
    Meng, Q., Zhang, T., Gao, X., Song, J.-Y.: Adaptive sliding mode fault-tolerant control of the uncertain stewart platform based on offline multibody dynamics. IEEE/ASME Trans. Mechatron. 19(3), 882–894 (2014)CrossRefGoogle Scholar
  26. 26.
    Nasiri, A., Nguang, S.K., Swain, A.: Adaptive sliding mode control for a class of mimo nonlinear systems with uncertainties. J. Franklin Inst. 351(4), 2048–2061 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liu, S., Zhou, H., Luo, X., Xiao, J.: Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems. J. Franklin Inst. 353(1), 180–199 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Roy, S., Baldi, S.: A simultaneous adaptation law for a class of nonlinearly parametrized switched systems. IEEE Control Syst. Lett. 3(3), 487–492 (2019)CrossRefGoogle Scholar
  29. 29.
    Roy, S., Roy, S.B., Kar, I.N.: A new design methodology of adaptive sliding mode control for a class of nonlinear systems with state dependent uncertainty bound. In: 15th International Workshop on Variable Structure Systems (VSS), pp. 414–419. IEEE (2018)Google Scholar
  30. 30.
    Hale, J.: Theory of Functional Differential Equations (1977)Google Scholar
  31. 31.
    Rudin, w. et al.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York (1964)Google Scholar
  32. 32.
    Grimm, W.M.: Robot non-linearity bounds evaluation techniques for robust control. Int. J. Adapt. Control 4(6), 501–522 (1990)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Roy, S., Nandy, S., Shome, S.N., Ray, R.: Robust position control of an autonomous underwater vehicle: a comparative study. In: EEE Conference on Automation Science and Engineering, pp. 1002–1007. IEEE (2013)Google Scholar
  34. 34.
    Mukherjee, J., Roy, S., Kar, I.N., Mukherjee, S.: A double-layered artificial delay-based approach for maneuvering control of planar snake robots. J. Dyn. Syst. Meas. Control 141(4), 1–10 (2019)CrossRefGoogle Scholar
  35. 35.
    Roy, S., Kar, I.N.: Adaptive sliding mode control of a class of nonlinear systems with artificial delay. J. Franklin Inst. 354(18), 8156–8179 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Roy, S., Kar, I.N., Lee, J., Jin, M.: Adaptive-Robust time-delay control for a class of uncertain Euler-Lagrange systems. IEEE Trans. Ind. Electron. 64(9), 7109–7119 (2017)CrossRefGoogle Scholar
  37. 37.
    Sharma, N.K., Roy, S., Janardhanan, S., Kar, I.N.: Adaptive discrete-time higher order sliding mode. IEEE Trans. Circuits Syst. II Express Briefs 66(4), 612–616 (2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Robotics Research CenterInternational Institute of Information TechnologyHyderabadIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations