Advertisement

Time-Delayed Control for a Class of EL Systems with Only Position Feedback

  • Spandan RoyEmail author
  • Indra Narayan Kar
Chapter
  • 201 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 257)

Abstract

The conventional Time-delayed estimation (TDE) based controllers necessitate state-derivative feedback in the form of velocity and acceleration for Euler-Lagrange (EL) systems. However, when explicitly unavailable, numerical differentiation method employed to compute these terms often invites considerable measurement error and degrades controller performance. This chapter offers a method to remove the explicit requirement of the velocity and acceleration feedback in a TDE-based controller for EL systems. Primarily, two concepts are introduced in this chapter: (i) The Position-only TDC (POTDC) is developed which only requires position feedback and estimates the velocity and acceleration terms from the past position information. (ii) An adaptive-robust framework, Adaptive-Robust POTDC (ARPOTDC), is built based on POTDC to tackle the estimation error arising from POTDC which can also alleviate the over- and under-estimation problems of switching gain. The closed-loop stability analysis of POTDC and ARPOTDC provides a selection criterion for sampling interval and the controller gains. The proposed methods are experimentally validated using ‘PIONEER-3’ wheeled mobile robot.

References

  1. 1.
    Hsia, T., Gao, L.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2070–2075. IEEE (1990)Google Scholar
  2. 2.
    Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control 112, 133 (1990)CrossRefGoogle Scholar
  3. 3.
    Lee, J., Yoo, C., Park, Y.-S., Park, B., Lee, S.-J., Gweon, D.-G., Chang, P.-H.: An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle. Mechatronics 22(2), 184–194 (2012)CrossRefGoogle Scholar
  4. 4.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Robust path tracking control of nonholonomic wheeled mobile robot: experimental validation. Int. J. Control Autom. Syst. 13(4), 897–905 (2015)CrossRefGoogle Scholar
  5. 5.
    Cho, G.R., Chang, P.H., Park, S.H., Jin, M.: Robust tracking under nonlinear friction using time-delay control with internal model. IEEE Trans. Control Syst. Technol. 17(6), 1406–1414 (2009)CrossRefGoogle Scholar
  6. 6.
    Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008)CrossRefGoogle Scholar
  7. 7.
    Lee, J., Chang, P.H., Jamisola, R.S.: Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Trans. Ind. Electron. 61(7), 3786–3796 (2014)CrossRefGoogle Scholar
  8. 8.
    Jin, Y., Chang, P.H., Jin, M., Gweon, D.G.: Stability guaranteed time-delay control of manipulators using nonlinear damping and terminal sliding mode. IEEE Trans. Ind. Electron. 60(8), 3304–3317 (2013)Google Scholar
  9. 9.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Time delay sliding mode control of nonholonomic wheeled mobile robot: experimental validation. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2886–2892. IEEE (2014)Google Scholar
  10. 10.
    Roy, S., Kar, I.N.: Adaptive-robust control of uncertain Euler-Lagrange systems with past data: a time-delayed approach. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 5715–5720. IEEE (2016)Google Scholar
  11. 11.
    Roy, S., Kar, I.N.: Robust time-delayed control of a class of uncertain nonlinear systems. IFAC-PapersOnLine 49(1), 736–741 (2016)CrossRefGoogle Scholar
  12. 12.
    Roy, S., Nandy, S., Shome, S.N., Ray, R.: Robust position control of an autonomous underwater vehicle: a comparative study. In: EEE Conference on Computer Science and Engineering, pp. 1002–1007. IEEE (2013)Google Scholar
  13. 13.
    Roy, S., Nandy, S., Kar, I.N., Ray, R., Shome, S.N.: Robust control of nonholonomic wheeled mobile robot with past information: theory and experiment. In: Proc. Inst. Mech. Eng. J. Syst. Control Eng. 231(3), 178–188 (2017)Google Scholar
  14. 14.
    Roy, S., Kar, I.N.: Adaptive sliding mode control of a class of nonlinear systems with artificial delay. J. Franklin Inst. 354(18), 8156–8179 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Roy, S., Kar, I.N., Lee, J., Jin, M.: Adaptive-robust time-delay control for a class of uncertain Euler-Lagrange systems. IEEE Trans. Ind. Electron. 64(9), 7109–7119 (2017)CrossRefGoogle Scholar
  16. 16.
    Mukherjee, J., Roy, S., Kar, I.N., Mukherjee, S.: A double-layered artificial delay-based approach for maneuvering control of planar snake robots. J. Dyn. Syst. Meas. Control 141(4), 1–10 (2019)CrossRefGoogle Scholar
  17. 17.
    Roy, S., Lee, J., Baldi, S.: A new continuous-time stability perspective of time-delay control: Introducing a state-dependent upper bound structure. IEEE Control Syst. Lett. 3(2), 475–480 (2019)CrossRefGoogle Scholar
  18. 18.
    Roy, S., Roy, S.B., Lee, J., Baldi, S.: Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans, Mechatron. (2019)Google Scholar
  19. 19.
    Rudin, W. et al.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill New York (1964)Google Scholar
  20. 20.
    Reger, J., Jouffroy, J.: On algebraic time-derivative estimation and deadbeat state reconstruction. In: 48th IEEE Conference on Decision and Control, held jointly with the 28th Chinese Control Conference CDC/CCC 2009, pp. 1740–1745. IEEE (2009)Google Scholar
  21. 21.
    Nicosia, S., Tomei, P.: Robot control by using only joint position measurements. IEEE Trans. Autom. Control 35(9), 1058–1061 (1990)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Berghuis, H., Nijmeijer, H.: Global regulation of robots using only position measurements. Syst. Control Lett. 21(4), 289–293 (1993)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ye, J., Roy, S., Godjevac, M., Baldi, S.: Observer-based robust control for dynamic positioning of large-scale heavy lift vessels. IFAC-PapersOnLine 52(3), 138–143 (2019)CrossRefGoogle Scholar
  24. 24.
    Hale, J.: Theory of Functional Differential Equations (1977)Google Scholar
  25. 25.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jersey (2002)zbMATHGoogle Scholar
  26. 26.
    Roy, S., Kar, I.N., Lee, J., Tsagarakis, N.G., Caldwell, D.G.: Adaptive-robust control of a class of EL systems with parametric variations using artificially delayed input and position feedback. IEEE Trans. Control Syst. Technol. 27(2), 603–615 (2019)CrossRefGoogle Scholar
  27. 27.
    Roy, S., Kar, I.N., Lee, J.: Toward position-only time-delayed control for uncertain Euler-Lagrange systems: experiments on wheeled mobile robots. IEEE Robot. Autom. Lett 2(4), 1925–1932 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Robotics Research CenterInternational Institute of Information TechnologyHyderabadIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations