Advertisement

Adaptive-Robust Control for Systems with State-Dependent Upper Bound in Uncertainty

  • Spandan RoyEmail author
  • Indra Narayan Kar
Chapter
  • 204 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 257)

Abstract

In the previous chapters, the time-delayed estimation (TDE) method based adaptive-Robust control (ARC) designs could only reduce the dependency on the system dynamics to a certain extent, but not completely. It requires the knowledge of the mass-matrix of an Euler-Lagrange (EL) system with an inherent assumption that the available sampling frequency is considerably high compared to the rate of change of uncertainty, implying a TDE-based strategy may not yield satisfactory result under fast changing uncertainty or under limited computation capability. Further, the state-of-the-art ARC designs, which do not utilize TDE, either require structural knowledge of the system or can only tackle a priori bounded uncertainties. However, for an EL system, imposition of a priori boundedness on the uncertainty is very restrictive owing to its inherent state-dependent structure of uncertainty. Therefore, considering various limitations of the existing ARC designs, this chapter provides a new ARC framework that (i) does not require any knowledge of the system structure or the system parameters and (ii) does not impose any restriction on the rate of change uncertainty or any a priori boundedness condition on the uncertainties.

References

  1. 1.
    Hsia, T., Gao, L.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2070–2075. IEEE (1990)Google Scholar
  2. 2.
    Hsia, T.S., Lasky, T., Guo, Z.: Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Ind. Electron. 38(1), 21–25 (1991)CrossRefGoogle Scholar
  3. 3.
    Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. ASME J. Dyn. Syst. Meas. Control 112, 133 (1990)CrossRefGoogle Scholar
  4. 4.
    Roy, S., Nandy, S., Shome, S.N., Ray, R.: Robust position control of an autonomous underwater vehicle: a comparative study. In: EEE Conference on Automation Science and Engineering, pp. 1002–1007. IEEE (2013)Google Scholar
  5. 5.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Time delay sliding mode control of nonholonomic wheeled mobile robot: experimental validation. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2886–2892. IEEE (2014)Google Scholar
  6. 6.
    Roy, S., Nandy, S., Ray, R., Shome, S.N.: Robust path tracking control of nonholonomic wheeled mobile robot: Experimental validation. Int. J. Control Autom. Syst. 13(4), 897–905 (2015)CrossRefGoogle Scholar
  7. 7.
    Roy, S., Nandy, S., Kar, I.N., Ray, R., Shome, S.N.: Robust control of nonholonomic wheeled mobile robot with past information: theory and experiment. Proc. Inst. Mech. Eng. J. Syst. Control Eng. 231(3), 178–188 (2017)Google Scholar
  8. 8.
    Roy, S., Kar, I.N., Lee, J.: Toward position-only time-delayed control for uncertain Euler-Lagrange systems: experiments on wheeled mobile robots. IEEE Robot. Autom. Lett 2(4), 1925–1932 (2017)CrossRefGoogle Scholar
  9. 9.
    Roy, S., Kar, I.N.: Robust time-delayed control of a class of uncertain nonlinear systems. IFAC-PapersOnLine 49(1), 736–741 (2016)CrossRefGoogle Scholar
  10. 10.
    Mukherjee, J., Roy, S., Kar, I.N., Mukherjee, S.: A double-layered artificial delay-based approach for maneuvering control of planar snake robots. J. Dyn. Syst. Meas. Control 141(4), 1–10 (2019)CrossRefGoogle Scholar
  11. 11.
    Roy, S., Kar, I.N.: Adaptive-robust control of uncertain Euler-Lagrange systems with past data: a time-delayed approach. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 5715–5720. IEEE (2016)Google Scholar
  12. 12.
    Roy, S., Kar, I.N.: Adaptive sliding mode control of a class of nonlinear systems with artificial delay. J. Franklin Inst. 354(18), 8156–8179 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Roy, S., Kar, I.N., Lee, J., Jin, M.: Adaptive-robust time-delay control for a class of uncertain Euler-Lagrange systems. IEEE Trans. Ind. Electron. 64(9), 7109–7119 (2017)CrossRefGoogle Scholar
  14. 14.
    Roy, S., Kar, I.N., Lee, J., Tsagarakis, N.G., Caldwell, D.G.: Adaptive-robust control of a class of EL systems with parametric variations using artificially delayed input and position feedback. IEEE Trans. Control Syst. Technol. 27(2), 603–615 (2019)CrossRefGoogle Scholar
  15. 15.
    Liu, X., Su, H., Yao, B., Chu, J.: Adaptive robust control of a class of uncertain nonlinear systems with unknown sinusoidal disturbances. In: 47th IEEE Conference on Decision and Control, 2008. CDC 2008, pp. 2594–2599. IEEE (2008)Google Scholar
  16. 16.
    Zhu, X., Tao, G., Yao, B., Cao, J.: Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy. IEEE/ASME Trans. Mechatron. 13(4), 441–450 (2008)CrossRefGoogle Scholar
  17. 17.
    Zhu, X., Tao, G., Yao, B., Cao, J.: Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles. IEEE Trans. Control Syst. Technol. 17(3), 576–588 (2009)CrossRefGoogle Scholar
  18. 18.
    Zhang, G., Chen, J., Lee, Z.: Adaptive robust control for servo mechanisms with partially unknown states via dynamic surface control approach. IEEE Trans. Control Syst. Technol. 18(3), 723–731 (2010)CrossRefGoogle Scholar
  19. 19.
    Guan, C., Pan, S.: Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters. IEEE Trans. Control Syst. Technol. 16(3), 434–445 (2008)CrossRefGoogle Scholar
  20. 20.
    Sun, W., Zhao, Z., Gao, H.: Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2013)CrossRefGoogle Scholar
  21. 21.
    Chen, Z., Yao, B., Wang, Q.: \(\mu \)-synthesis-based adaptive tobust control of linear motor driven stages with high-frequency dynamics: a aase study. IEEE/ASME Trans. Mechatron. 20(3), 1482–1490 (2015)Google Scholar
  22. 22.
    Chen, C.-Y., Li, T.-H.S., Yeh, Y.-C., Chang, C.-C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronic 19(2), 156–166 (2009)CrossRefGoogle Scholar
  23. 23.
    Nasiri, A., Nguang, S.K., Swain, A., Almakhles, D.: Passive actuator fault tolerant control for a class of mimo non-linear systems with uncertainties. Int. J. Control 92(3), 693–704 (2019)CrossRefGoogle Scholar
  24. 24.
    Nasiri, A., Nguang, S.K., Swain, A.: Adaptive sliding mode control for a class of mimo nonlinear systems with uncertainties. J. Franklin Inst. 351(4), 2048–2061 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Meng, Q., Zhang, T., Gao, X., Song, J.-Y.: Adaptive sliding mode fault-tolerant control of the uncertain stewart platform based on offline multibody dynamics. IEEE/ASME Trans. Mechatron. 19(3), 882–894 (2014)CrossRefGoogle Scholar
  26. 26.
    Liu, S., Zhou, H., Luo, X., Xiao, J.: Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems. J. Franklin Inst. 353(1), 180–199 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mobayen, S.: An adaptive chattering-free pid sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems. Nonlinear Dyn. 82(1–2), 53–60 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. control 83(9), 1907–1919 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: Sliding mode control with gain adaptation-application to an electropneumatic actuator. Control Eng. Pract. 21(5), 679–688 (2013)CrossRefGoogle Scholar
  30. 30.
    Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Moreno, J.A., Negrete, D.Y., Torres-González, V., Fridman, L.: Adaptive continuous twisting algorithm. Int. J. Control 89(9), 1798–1806 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Roy, S., Baldi, S.: On reduced-complexity robust adaptive control of switched euler-lagrange systems. Nonlinear Anal. Hybrid Syst. 34, 226–237 (2019)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Roy, S., Baldi, S.: A simultaneous adaptation law for a class of nonlinearly parametrized switched systems. IEEE Control Syst. Lett. 3(3), 487–492 (2019)CrossRefGoogle Scholar
  34. 34.
    Roy, S., Roy S.B., Lee, J., Baldi, S.: Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans, Mechatron. (2019)Google Scholar
  35. 35.
    Annaswamy, A.M., Skantze, F.P., Loh, A.-P.: Adaptive control of continuous time systems with convex/concave parametrization. Automatica 34(1), 33–49 (1998)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Adetola, V., Guay, M., Lehrer, D.: Adaptive estimation for a class of nonlinearly parameterized dynamical systems. IEEE Trans. Autom. Control 59(10), 2818–2824 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2008)Google Scholar
  38. 38.
    Roy, S., Roy, S.B., Kar, I.N.: A new design methodology of adaptive sliding mode control for a class of nonlinear systems with state dependent uncertainty bound. In: 15th International Workshop on Variable Structure Systems (VSS), pp. 414–419. IEEE (2018)Google Scholar
  39. 39.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jewsey (2002)zbMATHGoogle Scholar
  40. 40.
    Anderson, B., Jackson, J., Sitharam, M.: Descartes’ rule of signs revisited. Am. Math. Monthly 105(5), 447–451 (1998)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Russ, S.: A translation of bolzano’s paper on the intermediate value theorem. Historia Math. 7(2), 156–185 (1980)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Leung, K.T., Mok, I.A.C., Suen, S.N.: Polynomials and Functions. Honk Kong University Press (1992)Google Scholar
  43. 43.
    Roy, S., Roy, S.B., Kar, I.N.: Theory and application on adaptive-robust control of Euler-Lagrange systems with linearly parametrizable uncertainty bound (2017). arXiv:1708.01442
  44. 44.
    Campion, G., d’Andrea Novel, B., Bastin, G.: Modelling and state feedback control of nonholonomic mechanical systems. In: Proceedings of the 30th IEEE Conference on Decision and Control, 1991, pp. 1184–1189. IEEE (1991)Google Scholar
  45. 45.
    Roy, S., Roy, S.B., Kar, I.N.: Adaptive-robust control of Euler-Lagrange systems with linearly parametrizable uncertainty bound. IEEE Trans. Control Syst. Technol. 26(5), 1842–1850 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Robotics Research CenterInternational Institute of Information TechnologyHyderabadIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations