Molecular Profiling of Breast Cancer in Clinical Trials: A Perspective

  • Saima Shakil MalikEmail author
  • Iqra
  • Nosheen Akhtar
  • Iffat Fatima
  • Zaineb Akram
  • Nosheen Masood


Breast cancer molecular profiling is a fundamental criterion to identify novel molecular targets and determine pertinent treatment options. Advancement in molecular profiling has provided greater and in-depth insight into this heterogeneous disease, over and above hormone receptor and HER2 status. Agents targeting newly investigated biomarkers are under clinical development, and their success most likely depends on exploring the patient population, going to be benefitted/treated. Therefore, pre-screening and stratification of biomarkers that can predict or monitor treatment response with respect to the tumor type and stage are the essential prerequisites for conducting breast cancer clinical trials. In the current chapter, we have discussed available molecular profiling technologies for breast cancer diagnosis, prognosis, and treatment.


Breast cancer Molecular profiling Diagnosis Clinical trials 


  1. 1.
    Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. CA Cancer J Clin 69(1):7–34CrossRefGoogle Scholar
  2. 2.
    Wadasadawala T, Lewis S, Parmar V, Budrukkar A, Gupta S, Nair N, Shet T, Badwe R, Sarin R (2018) Bilateral breast cancer after multimodality treatment: a report of clinical outcomes in an Asian population. Clin Breast Cancer 18(4):e727–e737CrossRefGoogle Scholar
  3. 3.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefGoogle Scholar
  4. 4.
    Adeloye D, Sowunmi OY, Jacobs W, David RA, Adeosun AA, Amuta AO, Misra S, Gadanya M, Auta A, Harhay MO (2018) Estimating the incidence of breast cancer in Africa: a systematic review and meta-analysis. J Glob Health 8(1):010419CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Malik SS, Mubarik S, Masood N, Khadim MT (2018) An insight into clinical outcome of XPG polymorphisms in breast cancer. Mol Biol Rep 45(6):2369–2375CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pang JMB, Gorringe KL, Fox SB (2016) Ductal carcinoma in situ–update on risk assessment and management. Histopathology 68(1):96–109CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Martínez-Pérez C, Turnbull AK, Ekatah GE, Arthur LM, Sims AH, Thomas JS, Dixon JM (2017) Current treatment trends and the need for better predictive tools in the management of ductal carcinoma in situ of the breast. Cancer Treat Rev 55:163–172CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Holten-Rossing H, Talman MLM, Jylling AMB, Lænkholm AV, Kristensson M, Vainer B (2017) Application of automated image analysis reduces the workload of manual screening of sentinel lymph node biopsies in breast cancer. Histopathology 71(6):866–873CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Malik SS, Masood N, Asif M, Ahmed P, Shah ZU, Khan JS (2018) Expressional analysis of MLH1 and MSH2 in breast cancer. Curr Probl Cancer 43(2):97–105CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5(3):412CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MD, Niu B, McLellan MD, Uzunangelov V (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Russnes HG, Lingjaerde OC, Børresen-Dale A-L, Caldas C (2017) Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am J Pathol 187(10):2152–2162CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Guedj M, Marisa L, De Reynies A, Orsetti B, Schiappa R, Bibeau F, Macgrogan G, Lerebours F, Finetti P, Longy M (2012) A refined molecular taxonomy of breast cancer. Oncogene 31(9):1196CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, Selves J, Sautès-Fridman C, Laurent-Puig P, Fridman WH (2016) Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin Cancer Res 22(16):4057–4066CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bristow RG, Alexander B, Baumann M, Bratman SV, Brown JM, Camphausen K, Choyke P, Citrin D, Contessa JN, Dicker A (2018) Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol 19(5):e240–e251CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coyle KM, Boudreau JE, Marcato P (2017) Genetic mutations and epigenetic modifications: driving cancer and informing precision medicine. Biomed Res Int 2017:9620870CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cadoo KA, Traina TA, King TA (2013) Advances in molecular and clinical subtyping of breast cancer and their implications for therapy. Surg Oncol Clin 22(4):823–840CrossRefGoogle Scholar
  18. 18.
    Serrano-Gómez SJ, Fejerman L, Zabaleta J (2018) Breast cancer in Latinas: a focus on intrinsic subtypes distribution. Cancer Epidemiol Prev Biomarkers 27(1):3–10CrossRefGoogle Scholar
  19. 19.
    Hernandez-Aya LF, Ma CX (2016) Chemotherapy principles of managing stage IV breast cancer in the United States. Chin Clin Oncol 5(3):42CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ong FS, Das K, Wang J, Vakil H, Kuo JZ, Blackwell W-LB, Lim SW, Goodarzi MO, Bernstein KE, Rotter JI (2012) Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing. Expert Rev Mol Diagn 12(6):593–602CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Matissek KJ, Onozato ML, Sun S, Zheng Z, Schultz A, Lee J, Patel K, Jerevall P-L, Saladi SV, Macleay A (2018) Expressed gene fusions as frequent drivers of poor outcomes in hormone receptor–positive breast cancer. Cancer Discov 8(3):336–353CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Veeraraghavan J, Tan Y, Cao X-X, Kim JA, Wang X, Chamness GC, Maiti SN, Cooper LJ, Edwards DP, Contreras A (2014) Recurrent ESR1–CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat Commun 5:4577CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nuciforo PG (2016) Quantitative analysis of HER family proteins using mass spectrometry as a predictive tool of response to anti-HER therapies in breast cancer. Department of Surgery, University of Barcelona. ISBN: 9788449065507Google Scholar
  24. 24.
    Mangolini A, Ferracin M, Zanzi MV, Saccenti E, Ebnaof SO, Poma VV, Sanz JM, Passaro A, Pedriali M, Frassoldati A (2015) Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomarker Res 3(1):12CrossRefGoogle Scholar
  25. 25.
    Munson DJ, Egelston CA, Chiotti KE, Parra ZE, Bruno TC, Moore BL, Nakano TA, Simons DL, Jimenez G, Yim JH (2016) Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR. Proc Natl Acad Sci 113(29):8272–8277CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Snider J (2014) Overview of immunohistochemistry. Thermo Fisher Scientific Inc. Retrieved 05 Jan 2014 Disponible en
  27. 27.
    Sinn H-P, Schneeweiss A, Keller M, Schlombs K, Laible M, Seitz J, Lakis S, Veltrup E, Altevogt P, Eidt S (2017) Comparison of immunohistochemistry with PCR for assessment of ER, PR, and Ki-67 and prediction of pathological complete response in breast cancer. BMC Cancer 17(1):124CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bahreini F, Soltanian AR, Mehdipour P (2015) A meta-analysis on concordance between immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to detect HER2 gene overexpression in breast cancer. Breast Cancer 22(6):615–625CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang Y, Cottman M, Schiffman JD (2012) Molecular inversion probes: a novel microarray technology and its application in cancer research. Cancer Genet 205(7-8):341–355CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pant S, Weiner R, Marton MJ (2014) Navigating the rapids: the development of regulated next-generation sequencing-based clinical trial assays and companion diagnostics. Front Oncol 4:78CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nishizaki SS, Boyle AP (2017) Mining the unknown: assigning function to noncoding single nucleotide polymorphisms. Trends Genet 33(1):34–45CrossRefGoogle Scholar
  32. 32.
    Laskin J, Jones S, Aparicio S, Chia S, Ch’ng C, Deyell R, Eirew P, Fok A, Gelmon K, Ho C (2015) Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers. Mol Case Stud 1(1):a000570CrossRefGoogle Scholar
  33. 33.
    Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16(8):531CrossRefGoogle Scholar
  34. 34.
    McVeigh TP, Kerin MJ (2017) Clinical use of the Oncotype DX genomic test to guide treatment decisions for patients with invasive breast cancer. Breast Cancer Targets Ther 9:393CrossRefGoogle Scholar
  35. 35.
    Roberts MC, Miller DP, Shak S, Petkov VI (2017) Breast cancer-specific survival in patients with lymph node-positive hormone receptor-positive invasive breast cancer and oncotype DX recurrence score results in the SEER database. Breast Cancer Res Treat 163(2):303–310CrossRefGoogle Scholar
  36. 36.
    Kittaneh M, Montero AJ, Glück S (2013) Molecular profiling for breast cancer: a comprehensive review. Biomarkers Cancer 5:S9455CrossRefGoogle Scholar
  37. 37.
    Cronin M, Sangli C, Liu M-L, Pho M, Dutta D, Nguyen A, Jeong J, Wu J, Langone KC, Watson D (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor–positive breast cancer. Clin Chem 53(6):1084–1091CrossRefGoogle Scholar
  38. 38.
    Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, Esteban JM, Baker JB (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164(1):35–42CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, Zackrisson S, Cardoso F (2015) Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26(suppl_5):v8–v30CrossRefGoogle Scholar
  40. 40.
    Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn H-J, Members P, André F (2015) Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26(8):1533–1546CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wood DE (2015) National Comprehensive Cancer Network (NCCN) clinical practice guidelines for lung cancer screening. Thorac Surg Clin 25(2):185–197CrossRefGoogle Scholar
  42. 42.
    Duffy M, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F (2017) Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 75:284–298CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Curtit E, Mansi L, Maisonnette-Escot Y, Sautière J-L, Pivot X (2017) Prognostic and predictive indicators in early-stage breast cancer and the role of genomic profiling: focus on the Oncotype DX® Breast Recurrence Score Assay. Eur J Surg Oncol 43(5):921–930CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li H, Zhu Y, Burnside ES, Drukker K, Hoadley KA, Fan C, Conzen SD, Whitman GJ, Sutton EJ, Net JM (2016) MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology 281(2):382–391CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mariotto A, Jayasekerea J, Petkov V, Schechter CB, Enewold L, Helzlsouer KJ, Feuer EJ, Mandelblatt JS (2019) Expected monetary impact of oncotype DX score-concordant systemic breast cancer therapy based on the TAILORx trial. JNCI: J Natl Cancer Inst.
  46. 46.
    Chandler Y, Schechter CB, Jayasekera J, Near A, O’Neill SC, Isaacs C, Phelps CE, Ray GT, Lieu TA, Ramsey S (2018) Cost effectiveness of gene expression profile testing in community practice. J Clin Oncol 36(6):554CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Brandão M, Pondé N, Piccart-Gebhart M (2018) Mammaprint™: a comprehensive review. Future Oncol 15(2):207–224CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Xin L, Liu Y-H, Martin TA, Jiang WG (2017) The era of multigene panels comes? The clinical utility of Oncotype DX and Mammaprint. World J Oncol 8(2):34CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Webber VL (2019) Comprehensive gene assessment of estrogen receptor positive breast cancers reveals that HER2 positive status plays an important role in resistance to neoadjuvant letrozole. Cancer Res 73:7683Google Scholar
  50. 50.
    Glas AM, Delahaye L, Krijgsman O (2019) Mammaprint of a multi-marker microarray as a routine diagnostic. In: Molecular diagnostics: the key in personalized cancer medicine. Pan Stanford Publishing, Singapore, p 139CrossRefGoogle Scholar
  51. 51.
    Beumer I, Witteveen A, Delahaye L, Wehkamp D, Snel M, Dreezen C, Zheng J, Floore A, Brink G, Chan B (2016) Equivalence of MammaPrint array types in clinical trials and diagnostics. Breast Cancer Res Treat 156(2):279–287CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ono M, Tsuda H, Yoshida M, Shimizu C, Kinoshita T, Tamura K (2017) Prognostic significance of progesterone receptor expression in estrogen-receptor positive, HER2-negative, node-negative invasive breast cancer with a low Ki-67 labeling index. Clin Breast Cancer 17(1):41–47CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5(10):2929PubMedPubMedCentralGoogle Scholar
  54. 54.
    Han HS, Magliocco AM (2016) Molecular testing and the pathologist’s role in clinical trials of breast cancer. Clin Breast Cancer 16(3):166–179CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Barcenas CH, Raghavendra A, Sinha AK, Syed MP, Hsu L, Patangan MG Jr, Chavez-MacGregor M, Shen Y, Hortobagyi GH, Valero V (2017) Outcomes in patients with early-stage breast cancer who underwent a 21-gene expression assay. Cancer 123(13):2422–2431CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Delahaye LJ, Wehkamp D, Floore AN, Bernards R, van’t Veer LJ, Glas AM (2013) Performance characteristics of the MammaPrint® breast cancer diagnostic gene signature. Pers Med 10(8):801–811CrossRefGoogle Scholar
  57. 57.
    Bender RA (2009) Company profile: Agendia, Inc. Biomark Med 3(3):225–230CrossRefGoogle Scholar
  58. 58.
    Agendia NV (2019) MammaPrint and BluePrint Breast Cancer Recurrence and Molecular Subtyping Kit-Package Insert. available at:
  59. 59.
    Chia SK, Bramwell VH, Tu D, Shepherd LE, Jiang S, Vickery T, Mardis E, Leung S, Ung K, Pritchard KI (2012) A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res 18(16):4465–4472CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Győrffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L (2015) Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res 17(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Naoi Y, Kishi K, Tanei T, Tsunashima R, Tominaga N, Baba Y, Kim SJ, Taguchi T, Tamaki Y, Noguchi S (2011) High genomic grade index associated with poor prognosis for lymph node-negative and estrogen receptor-positive breast cancers and with good response to chemotherapy. Cancer 117(3):472–479CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hsu C-C, Huang C-E, Wu Y-Y, Chen Y-Y, Lung J, Leu Y-W, Li C-P, Tsou H-Y, Chuang W-H, Lu C-H (2018) Quantitative competitive allele-specific TaqMan duplex PCR (qCAST-Duplex PCR) assay: a refined method for highly sensitive and specific detection of JAK2V617F mutant allele burdens. Haematologica 103(10):e450–e454CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Azim H Jr, Michiels S, Zagouri F, Delaloge S, Filipits M, Namer M, Neven P, Symmans W, Thompson A, Andre F (2013) Utility of prognostic genomic tests in breast cancer practice: the IMPAKT 2012 Working Group Consensus Statement. Ann Oncol 24(3):647–654CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhao L, Zhu S, Gao Y, Wang Y (2014) Two-gene expression ratio as predictor for breast cancer treated with tamoxifen: evidence from meta-analysis. Tumor Biol 35(4):3113–3117CrossRefGoogle Scholar
  66. 66.
    Dwivedi S, Purohit P, Misra R, Pareek P, Goel A, Khattri S, Pant KK, Misra S, Sharma P (2017) Diseases and molecular diagnostics: a step closer to precision medicine. Indian J Clin Biochem 32(4):374–398CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gonzalez de Castro D, Clarke P, Al-Lazikani B, Workman P (2013) Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther 93(3):252–259CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hammond MEH, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134(7):e48–e72PubMedPubMedCentralGoogle Scholar
  69. 69.
    Taylor CR (2018) Introduction to predictive biomarkers: definitions. In: Predictive biomarkers in oncology: applications in precision medicine. Springer, Cham, p 1Google Scholar
  70. 70.
    Gore CR, Gurwale S, Sammi A, Dey I, Deshpande AH (2018) Estrogen, progesterone, and human epidermal growth factor receptor-2 in malignant breast lesions. Med J Dr DY Patil Vidyapeeth 11(1):9Google Scholar
  71. 71.
    Dalerba PD, Clarke MF, Sahoo D, Raab WJ, Salazar LEV (2018) Biomarker for predicting colon cancer responsiveness to anti-tumor treatment. Google PatentsGoogle Scholar
  72. 72.
    Gilbert MTP, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, Van Marck E, Worobey M (2007) The isolation of nucleic acids from fixed, paraffin-embedded tissues–which methods are useful when? PLoS One 2(6):e537CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bishop DP, Cole N, Zhang T, Doble PA, Hare DJ (2018) A guide to integrating immunohistochemistry and chemical imaging. Chem Soc Rev 47(11):3770–3787CrossRefGoogle Scholar
  74. 74.
    Smith AM, Dave S, Nie S, True L, Gao X (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6(2):231–244CrossRefGoogle Scholar
  75. 75.
    Bilan R, Nabiev I, Sukhanova A (2016) Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem 17(22):2103–2114CrossRefGoogle Scholar
  76. 76.
    Hofman P, Badoual C, Henderson F, Berland L, Hamila M, Long-Mira E, Lassalle S, Roussel H, Hofman V, Tartour E (2019) Multiplexed immunohistochemistry for molecular and immune profiling in lung cancer—just about ready for prime-time? Cancer 11(3):283CrossRefGoogle Scholar
  77. 77.
    Söll I, Hauptmann G (2015) Multicolored visualization of transcript distributions in drosophila embryos. In: In situ hybridization methods. Springer, New York, pp 45–59CrossRefGoogle Scholar
  78. 78.
    Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K (2018) Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol 13(3):323–358CrossRefGoogle Scholar
  79. 79.
    Dixit CK, Kadimisetty K, Otieno BA, Tang C, Malla S, Krause CE, Rusling JF (2016) Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst 141(2):536–547CrossRefGoogle Scholar
  80. 80.
    Kim MS, Kim T, Kong S-Y, Kwon S, Bae CY, Choi J, Kim CH, Lee ES, Park J-K (2010) Breast cancer diagnosis using a microfluidic multiplexed immunohistochemistry platform. PLoS One 5(5):e10441CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mitra D (2013) Microfluidic modules for enabling point-of-care biopsy-based cancer diagnostics. UC Berkeley, BerkeleyGoogle Scholar
  82. 82.
    Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RM (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Anna SL (2016) Droplets and bubbles in microfluidic devices. Annu Rev Fluid Mech 48:285–309CrossRefGoogle Scholar
  84. 84.
    Park J-K (2010) Lab-on-a-chip technology for integrative bioengineering. In: 10th IEEE international conference on nanotechnology. IEEE, Piscataway, pp 156–159CrossRefGoogle Scholar
  85. 85.
    Kim MS, Kwon S, Park J-K (2013) Breast cancer diagnostics using microfluidic multiplexed immunohistochemistry. In: Microfluidic diagnostics. Springer, New York, pp 349–364CrossRefGoogle Scholar
  86. 86.
    Kwon S, Cho CH, Lee ES, Park J-K (2015) Automated measurement of multiple cancer biomarkers using quantum-dot-based microfluidic immunohistochemistry. Anal Chem 87(8):4177–4183CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Pitt AR, Kolch W (2018) 24 Genomics, proteomics, and metabolomics. In: Medical Biochemistry E-Book, p. 319Google Scholar
  88. 88.
    Rabbani B, Nakaoka H, Akhondzadeh S, Tekin M, Mahdieh N (2016) Next generation sequencing: implications in personalized medicine and pharmacogenomics. Mol BioSyst 12(6):1818–1830CrossRefGoogle Scholar
  89. 89.
    Skol AD, Sasaki MM, Onel K (2016) The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Res 18(1):99CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Serratì S, De Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, Pinto R (2016) Next-generation sequencing: advances and applications in cancer diagnosis. OncoTargets Ther 9:7355CrossRefGoogle Scholar
  91. 91.
    Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerod A, Lee MT, Shen CY, Tee BT, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van’t Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SA, Salomon AV, Borresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR, Oslo Breast Cancer C (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404. Scholar
  92. 92.
    Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, Peng S, Ardlie KG, Auclair D, Bautista-Pina V, Duke F, Francis J, Jung J, Maffuz-Aziz A, Onofrio RC, Parkin M, Pho NH, Quintanar-Jurado V, Ramos AH, Rebollar-Vega R, Rodriguez-Cuevas S, Romero-Cordoba SL, Schumacher SE, Stransky N, Thompson KM, Uribe-Figueroa L, Baselga J, Beroukhim R, Polyak K, Sgroi DC, Richardson AL, Jimenez-Sanchez G, Lander ES, Gabriel SB, Garraway LA, Golub TR, Melendez-Zajgla J, Toker A, Getz G, Hidalgo-Miranda A, Meyerson M (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409. Scholar
  93. 93.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399. Scholar
  94. 94.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. Scholar
  95. 95.
    Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, Jones D, Hinton J, Marshall J, Stebbings LA, Menzies A, Martin S, Leung K, Chen L, Leroy C, Ramakrishna M, Rance R, Lau KW, Mudie LJ, Varela I, DJ MB, Bignell GR, Cooke SL, Shlien A, Gamble J, Whitmore I, Maddison M, Tarpey PS, Davies HR, Papaemmanuil E, Stephens PJ, McLaren S, Butler AP, Teague JW, Jonsson G, Garber JE, Silver D, Miron P, Fatima A, Boyault S, Langerod A, Tutt A, Martens JW, Aparicio SA, Borg A, Salomon AV, Thomas G, Borresen-Dale AL, Richardson AL, Neuberger MS, Futreal PA, Campbell PJ, Stratton MR, Breast Cancer Working Group of the International Cancer Genome C (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149(5):979–993. Scholar
  96. 96.
    Naume B, Zhao X, Synnestvedt M, Borgen E, Russnes HG, Lingjaerde OC, Stromberg M, Wiedswang G, Kvalheim G, Karesen R, Nesland JM, Borresen-Dale AL, Sorlie T (2007) Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol 1(2):160–171. Scholar
  97. 97.
    Beck J, Urnovitz HB, Mitchell WM, Schutz E (2010) Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Mol Cancer Res 8(3):335–342. Scholar
  98. 98.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. Scholar
  99. 99.
    Massacesi C, Tomaso E, Fretault N, Hirawat S (2013) Challenges in the clinical development of PI3K inhibitors. Ann N Y Acad Sci 1280(1):19CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Oliveira M, Baird R, van Rossum A, Beelen K, Garcia-Corbacho J, Mandjes I, Vallier A, van Werkhoven E, Garrigós L, Kumar S (2017) Abstract OT2-01-11: Phase II of POSEIDON: A phase Ib/randomized phase II trial of tamoxifen plus taselisib or placebo in hormone receptor positive, HER2 negative, metastatic breast cancer patients with prior exposure to endocrine treatment. AACR, PhiladelphiaCrossRefGoogle Scholar
  101. 101.
    Pituskin E, Mackey J, Koshman S, Jassal D, Pitz M, Haykowsky M, Thompson R, Oudit G, Ezekowitz J, Paterson I (2016) Abstract PD5-03: Prophylactic beta blockade preserves left ventricular ejection fraction in HER2-overexpresssing breast cancer patients receiving trastuzumab: Primary results of the MANTICORE randomized controlled trial. AACR, PhiladelphiaCrossRefGoogle Scholar
  102. 102.
    Kelly K, Patel MR, Infante JR, Iannotti N, Nikolinakos P, Leach J, Wang D, Chandler JC, Jerusalem GHM, Gurtler JS (2015) Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with metastatic or locally advanced solid tumors: assessment of safety and tolerability in a phase I, open-label expansion study. American Society of Clinical Oncology, AlexandriaGoogle Scholar
  103. 103.
    Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, Rugo HS, Liu MC, Stearns V, Come SE (2015) TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol 33(17):1902CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Chevrier S, Arnould L, Ghiringhelli F, Coudert B, Fumoleau P, Boidot R (2014) Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations. Int J Oncol 45(3):1167–1174CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Saima Shakil Malik
    • 1
    • 2
    Email author
  • Iqra
    • 3
  • Nosheen Akhtar
    • 4
  • Iffat Fatima
    • 5
  • Zaineb Akram
    • 6
  • Nosheen Masood
    • 3
  1. 1.Fatima Jinnah Women UniversityRawalpindiPakistan
  2. 2.Armed Forces Institute of PathologyRawalpindiPakistan
  3. 3.Microbiology and Biotechnology Research LabFatima Jinnah Women UniversityRawalpindiPakistan
  4. 4.National University of Medical ScienceRawalpindiPakistan
  5. 5.Quaid-i-Azam UniversityIslamabadPakistan
  6. 6.Armed Forces Bone Marrow Transplant CentreRawalpindiPakistan

Personalised recommendations