Systems Biology and Integrated Computational Methods for Cancer-Associated Mutation Analysis

  • Ayisha Zia
  • Sajid RashidEmail author


Systems biology offers great promise for the interpretation of genetic variation from functional standpoint. Sequence variation analysis holds a potential to inform systems biology by highlighting genes and their pathways. Genomic sequencing enables extensive amount of somatic mutations in tumors. Cancer genomic research aims to identify all genes associated to cancer and involvements of these genes in initiation of cancer and progression; however, this endeavor is characterized by numerous challenges like intricacy of biological networks affected by local mutation spectrum and huge amount of other passenger mutations. To date, development of multiple refined computational methods for screening cancer-driven mutations and pathways on the basis of their network information and biological pathways. These approaches can be classified into (1) network-based, (2) mutation frequency-based, (3) functional impact-based, (4) data integration-based, and (5) structural genomic-based methods. In silico modeling may pinpoint the effects caused by the missense mutations in order to deal with disease morphology. Hence, analyzing the mutations affecting a protein with the help of computational approaches and methods may intimate recognition of its functional importance and understanding the molecular mechanism of cancer progression. Here, we summarize some of the major computational methods and approaches that are useful in mutational studies, along with their recent advances and existing limitations. Nevertheless, better estimation of genetic variant association and genomics data interpretation with cancer or other disorders still requires significant efforts and improvement.


Computational methods Systems biology Data integration Biological networks Systems medicine 


  1. 1.
  2. 2.
    Palsson BO, Abrams M (2011) Systems biology: simulation of dynamic network states. Cambridge University Press, Cambridge. Scholar
  3. 3.
    Tavassoly I, Goldfarb J, Iyengar R (2018) Systems biology primer: the basic methods and approaches. Essays Biochem 62:487–500. Scholar
  4. 4.
    Chergui M (2009) Physical biology from atoms to medicine edited by Ahmed Zewail. Angew Chem Int Ed 48:3014–3016. Scholar
  5. 5.
    Longo G, Montévil M (2014) Perspectives on organisms. Springer, Berlin. Scholar
  6. 6.
    Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306:640–643. Scholar
  7. 7.
    Barillot E (2012) Computational systems biology of cancer. CRC Press, Boca Raton. Scholar
  8. 8.
    Werner HMJ, Mills GB, Ram PT (2014) Cancer systems biology: a peek into the future of patient care? Nat Rev Clin Oncol 11:167–176. Scholar
  9. 9.
    Gentles AJ, Gallahan D (2011) Systems biology: confronting the complexity of cancer. Cancer Res 71:5961–5964. Scholar
  10. 10.
    Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264. Scholar
  11. 11.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. Scholar
  12. 12.
    Rual J-F, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178. Scholar
  13. 13.
    German JB, Hammock BD, Watkins SM (2005) Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1:3–9. Scholar
  14. 14.
    Tyson JJ, Novák B (2010) Functional motifs in biochemical reaction networks. Annu Rev Phys Chem 61:219–240. Scholar
  15. 15.
    Kafri R, Levy J, Ginzberg MB et al (2013) Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494:480–483. Scholar
  16. 16.
    Iyengar R, Zhao S, Chung S-W et al (2012) Merging systems biology with pharmacodynamics. Sci Transl Med 4:126ps7. Scholar
  17. 17.
    Federoff HJ, Gostin LO (2009) Evolving from reductionism to holism: is there a future for systems medicine? JAMA 302:994–996. Scholar
  18. 18.
    Ayers D, Day PJ (2015) Systems medicine: the application of systems biology approaches for modern medical research and drug development. Mol Biol Int 2015:698169. Scholar
  19. 19.
    Cardinal-Fernández P, Nin N, Ruíz-Cabello J, Lorente JA (2014) Systems medicine: a new approach to clinical practice. Arch Bronconeumol 50:444–451. Scholar
  20. 20.
    Tillmann T, Gibson AR, Scott G et al (2015) Systems medicine 2.0: potential benefits of combining electronic health care records with systems science models. J Med Internet Res 17:e64. Scholar
  21. 21.
    Costa J (2008) Systems medicine in oncology. Nat Rev Clin Oncol 5:117–117. Scholar
  22. 22.
    Jin G, Wong STC (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19:637–644. Scholar
  23. 23.
    Jin G, Fu C, Zhao H et al (2012) A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res 72:33–44. Scholar
  24. 24.
    Mestdagh P, Lefever S, Pattyn F et al (2011) The microRNA body map: dissecting microRNA function through integrative genomics. Nucleic Acids Res 39:e136. Scholar
  25. 25.
    Dimitrakopoulos CM, Beerenwinkel N (2017) Computational approaches for the identification of cancer genes and pathways. Wiley Interdiscip Rev Syst Biol Med 9:e1364. Scholar
  26. 26.
    Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39:D945–D950. Scholar
  27. 27.
    Weinstein JN, Collisson EA, Cancer Genome Atlas Research Network et al (2013) The Cancer Genome Atlas pan-cancer analysis project. Nat Genet 45:1113–1120. Scholar
  28. 28.
    Hudson TJ, Anderson W, International Cancer Genome Consortium et al (2010) International network of cancer genome projects. Nature 464:993–998. Scholar
  29. 29.
    Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:11. Scholar
  30. 30.
    Porta-Pardo E, Hrabe T, Godzik A (2015) Cancer3D: understanding cancer mutations through protein structures. Nucleic Acids Res 43:D968–D973. Scholar
  31. 31.
    Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351. Scholar
  32. 32.
    ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. Scholar
  33. 33.
    Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461. Scholar
  34. 34.
    Kundaje A, Meuleman W, Roadmap Epigenomics Consortium et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330. Scholar
  35. 35.
    GTEx C (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660CrossRefGoogle Scholar
  36. 36.
    Ainscough BJ, Griffith M, Coffman AC et al (2016) DoCM: a database of curated mutations in cancer. Nat Methods 13:806–807. Scholar
  37. 37.
    Griffith M, Spies NC, Krysiak K et al (2017) CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 49:170–174. Scholar
  38. 38.
    Cheng F, Zhao J, Zhao Z (2016) Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes. Brief Bioinform 17:642–656. Scholar
  39. 39.
    Cheng F, Jia P, Wang Q et al (2014) Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome. Mol Biol Evol 31:2156–2169. Scholar
  40. 40.
    Croft D, Mundo AF, Haw R et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477. Scholar
  41. 41.
    Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307. Scholar
  42. 42.
    Schaefer CF, Anthony K, Krupa S et al (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674–D679. Scholar
  43. 43.
    Cerami EG, Gross BE, Demir E et al (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39:D685–D690. Scholar
  44. 44.
    Leiserson MDM, Vandin F, Wu H-T et al (2015) Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 47:106–114. Scholar
  45. 45.
    Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. Scholar
  46. 46.
    Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database--2009 update. Nucleic Acids Res 37:D767–D772. Scholar
  47. 47.
    Ceol A, Chatr Aryamontri A, Licata L et al (2010) MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:D532–D539. Scholar
  48. 48.
    Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846. Scholar
  49. 49.
    Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. Scholar
  50. 50.
    Cowley MJ, Pinese M, Kassahn KS et al (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res 40:D862–D865. Scholar
  51. 51.
    Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270. Scholar
  52. 52.
    Diella F, Cameron S, Gemünd C et al (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinf 5:79. Scholar
  53. 53.
    Minguez P, Letunic I, Parca L, Bork P (2013) PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins. Nucleic Acids Res 41:D306–D311. Scholar
  54. 54.
    Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10:47–53. Scholar
  55. 55.
    Meyer MJ, Das J, Wang X, Yu H (2013) INstruct: a database of high-quality 3D structurally resolved protein interactome networks. Bioinformatics 29:1577–1579. Scholar
  56. 56.
    Mosca R, Céol A, Stein A et al (2014) 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42:D374–D379. Scholar
  57. 57.
    Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. Scholar
  58. 58.
    Dees ND, Zhang Q, Kandoth C et al (2012) MuSiC: identifying mutational significance in cancer genomes. Genome Res 22:1589–1598. Scholar
  59. 59.
    Tian R, Basu MK, Capriotti E (2014) ContrastRank: a new method for ranking putative cancer driver genes and classification of tumor samples. Bioinformatics 30:i572–i578. Scholar
  60. 60.
    Tamborero D, Gonzalez-Perez A, Lopez-Bigas N (2013) OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29:2238–2244. Scholar
  61. 61.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081. Scholar
  62. 62.
    Sim N-L, Kumar P, Hu J et al (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457. Scholar
  63. 63.
    Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. Scholar
  64. 64.
    Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118. Scholar
  65. 65.
    Gonzalez-Perez A, Lopez-Bigas N (2012) Functional impact bias reveals cancer drivers. Nucleic Acids Res 40:e169. Scholar
  66. 66.
    Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. Scholar
  67. 67.
    Wong WC, Kim D, Carter H et al (2011) CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer. Bioinformatics 27:2147–2148. Scholar
  68. 68.
    Shihab HA, Gough J, Cooper DN et al (2013) Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29:1504–1510. Scholar
  69. 69.
    Douville C, Carter H, Kim R et al (2013) CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics 29:647–648. Scholar
  70. 70.
    Mao Y, Chen H, Liang H et al (2013) CanDrA: cancer-specific driver missense mutation annotation with optimized features. PLoS One 8:e77945. Scholar
  71. 71.
    Brunak S, De La Vega FM, Rätsch G, Stuart JM (2013) Cancer panomics: computational methods and infrastructure for integrative analysis of cancer high-throughput “omics” data-session introduction. In: Biocomputing 2014. World Scientific, Singapore, pp 1–2Google Scholar
  72. 72.
    Melloni GE, Ogier AG, de Pretis S et al (2014) DOTS-Finder: a comprehensive tool for assessing driver genes in cancer genomes. Genome Med 6:44. Scholar
  73. 73.
    Wong K, Keane TM, Stalker J, Adams DJ (2010) Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly. Genome Biol 11:R128. Scholar
  74. 74.
    Akavia UD, Litvin O, Kim J et al (2010) An integrated approach to uncover drivers of cancer. Cell 143:1005–1017. Scholar
  75. 75.
    Sanchez-Garcia F, Villagrasa P, Matsui J et al (2014) Integration of genomic data enables selective discovery of breast cancer drivers. Cell 159:1461–1475. Scholar
  76. 76.
    Chen Y, Hao J, Jiang W et al (2013) Identifying potential cancer driver genes by genomic data integration. Sci Rep 3:3538. Scholar
  77. 77.
    Schroeder MP, Rubio-Perez C, Tamborero D et al (2014) OncodriveROLE classifies cancer driver genes in loss of function and activating mode of action. Bioinformatics 30:i549–i555. Scholar
  78. 78.
    Bertrand D, Chng KR, Sherbaf FG et al (2015) Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res 43:e44. Scholar
  79. 79.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. Scholar
  80. 80.
    Jia P, Wang Q, Chen Q et al (2014) MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol 15:489. Scholar
  81. 81.
    Cheng F, Jia P, Wang Q, Zhao Z (2014) Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy. Oncotarget 5:3697–3710. Scholar
  82. 82.
    Reimand J, Bader GD (2013) Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol 9:637. Scholar
  83. 83.
    Wang Y, Cheng H, Pan Z et al (2015) Reconfiguring phosphorylation signaling by genetic polymorphisms affects cancer susceptibility. J Mol Cell Biol 7:187–202. Scholar
  84. 84.
    Vuong H, Cheng F, Lin C-C, Zhao Z (2014) Functional consequences of somatic mutations in cancer using protein pocket-based prioritization approach. Genome Med 6:81. Scholar
  85. 85.
    Zhao J, Cheng F, Wang Y et al (2016) Systematic prioritization of druggable mutations in ∼5000 genomes across 16 cancer types using a structural genomics-based approach. Mol Cell Proteomics 15:642–656. Scholar
  86. 86.
    Ghersi D, Singh M (2014) Interaction-based discovery of functionally important genes in cancers. Nucleic Acids Res 42:e18. Scholar
  87. 87.
    Ryslik GA, Cheng Y, Cheung K-H et al (2013) Utilizing protein structure to identify non-random somatic mutations. BMC Bioinf 14:190. Scholar
  88. 88.
    Porta-Pardo E, Godzik A (2014) e-Driver: a novel method to identify protein regions driving cancer. Bioinformatics 30:3109–3114. Scholar
  89. 89.
    Pe’er D, Hacohen N (2011) Principles and strategies for developing network models in cancer. Cell 144:864–873. Scholar
  90. 90.
    Ng S, Collisson EA, Sokolov A et al (2012) Paradigm-shift predicts the function of mutations in multiple cancers using pathway impact analysis. Bioinformatics 28:i640–i646. Scholar
  91. 91.
    Paull EO, Carlin DE, Niepel M et al (2013) Discovering causal pathways linking genomic events to transcriptional states using tied diffusion through interacting events (TieDIE). Bioinformatics 29:2757–2764. Scholar
  92. 92.
    Bashashati A, Haffari G, Ding J et al (2012) DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol 13:R124. Scholar
  93. 93.
    Hou JP, Ma J (2014) DawnRank: discovering personalized driver genes in cancer. Genome Med 6:56. Scholar
  94. 94.
    Jia P, Zhao Z (2014) VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data. PLoS Comput Biol 10:e1003460. Scholar
  95. 95.
    Hofree M, Shen JP, Carter H et al (2013) Network-based stratification of tumor mutations. Nat Methods 10:1108–1115. Scholar
  96. 96.
    Vandin F, Upfal E, Raphael BJ (2011) Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol 18:507–522. Scholar
  97. 97.
    Stumpf MPH, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105:6959–6964. Scholar
  98. 98.
    Menche J, Sharma A, Kitsak M et al (2015) Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347:1257601. Scholar
  99. 99.
    Perco P, Rapberger R, Siehs C et al (2006) Transforming omics data into context: bioinformatics on genomics and proteomics raw data. Electrophoresis 27:2659–2675. Scholar
  100. 100.
    Cavin Périer R, Junier T, Bucher P (1998) The eukaryotic promoter database EPD. Nucleic Acids Res 26:353–357. Scholar
  101. 101.
    Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545. Scholar
  102. 102.
    Flicek P, Aken BL, Beal K et al (2008) Ensemble 2008. Nucleic Acids Res 36:D707–D714. Scholar
  103. 103.
    Karolchik D, Kuhn RM, Baertsch R et al (2008) The UCSC genome browser database: 2008 update. Nucleic Acids Res 36:D773–D779. Scholar
  104. 104.
    Maglott D, Ostell J, Pruitt KD, Tatusova T (2005) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 33:D54–D58. Scholar
  105. 105.
    Camon E, Magrane M, Barrell D et al (2004) The Gene Ontology Annotation (GOA) database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32:D262–D266. Scholar
  106. 106.
    Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119. Scholar
  107. 107.
    Sterk P, Kersey PJ, Apweiler R (2006) Genome reviews: standardizing content and representation of information about complete genomes. OMICS 10:114–118. Scholar
  108. 108.
    Ogata H, Goto S, Sato K et al (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34. Scholar
  109. 109.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. Scholar
  110. 110.
    DeJongh M, Formsma K, Boillot P et al (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinf 8:139. Scholar
  111. 111.
    Krieger CJ, Zhang P, Mueller LA et al (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 32:D438–D442. Scholar
  112. 112.
    Karp PD, Ouzounis CA, Moore-Kochlacs C et al (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089. Scholar
  113. 113.
    Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279. Scholar
  114. 114.
    Zhao F, Xuan Z, Liu L, Zhang MQ (2005) TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies. Nucleic Acids Res 33:D103–D107. Scholar
  115. 115.
    Ji ZL, Chen X, Zhen CJ et al (2003) KDBI: kinetic data of bio-molecular interactions database. Nucleic Acids Res 31:255–257CrossRefGoogle Scholar
  116. 116.
    Le Novère N, Bornstein B, Broicher A et al (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34:D689–D691. Scholar
  117. 117.
    Sivakumaran S, Hariharaputran S, Mishra J, Bhalla US (2003) The database of quantitative cellular signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics 19:408–415. Scholar
  118. 118.
    Xenarios I, Salwínski L, Duan XJ et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305CrossRefGoogle Scholar
  119. 119.
    Zanzoni A, Montecchi-Palazzi L, Quondam M et al (2002) MINT: a molecular interaction database. FEBS Lett 513:135–140CrossRefGoogle Scholar
  120. 120.
    Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21:832–834. Scholar
  121. 121.
    Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. Scholar
  122. 122.
    Sherlock G, Hernandez-Boussard T, Kasarskis A et al (2001) The stanford microarray database. Nucleic Acids Res 29:152–155CrossRefGoogle Scholar
  123. 123.
    Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. Scholar
  124. 124.
    Shannon PT, Reiss DJ, Bonneau R, Baliga NS (2006) The Gaggle: an open-source software system for integrating bioinformatics software and data sources. BMC Bioinf 7:176. Scholar
  125. 125.
    Wolff AC, Hammond MEH, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013. Scholar
  126. 126.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009. Scholar
  127. 127.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. Scholar
  128. 128.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423. Scholar
  129. 129.
    Arnedos M, Vicier C, Loi S et al (2015) Precision medicine for metastatic breast cancer--limitations and solutions. Nat Rev Clin Oncol 12:693–704. Scholar
  130. 130.
    Ligthart S, Vaez A, Võsa U et al (2018) Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am J Hum Genet 103:691–706. Scholar
  131. 131.
    Abrahams E (2008) Right drug-right patient-right time: personalized medicine coalition. Clin Transl Sci 1:11–12. Scholar
  132. 132.
    Metias SM, Lianidou E, Yousef GM (2009) MicroRNAs in clinical oncology: at the crossroads between promises and problems. J Clin Pathol 62:771–776. Scholar
  133. 133.
    Ashley EA, Butte AJ, Wheeler MT et al (2010) Clinical assessment incorporating a personal genome. Lancet 375:1525–1535. Scholar
  134. 134.
    Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559:400–404. Scholar
  135. 135.
    Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389. Scholar
  136. 136.
    Johnson AD, O’Donnell CJ (2009) An open access database of genome-wide association results. BMC Med Genet 10:6. Scholar
  137. 137.
    Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337. Scholar
  138. 138.
    Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404. Scholar
  139. 139.
    Natter MD, Quan J, Ortiz DM et al (2013) An i2b2-based, generalizable, open source, self-scaling chronic disease registry. J Am Med Inform Assoc 20:172–179. Scholar
  140. 140.
    Stenson PD, Ball EV, Howells K et al (2009) The human gene mutation database: providing a comprehensive central mutation database for molecular diagnostics and personalised genomics. Hum Genomics 4:69. Scholar
  141. 141.
    Chen R, Mias GI, Li-Pook-Than J et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307. Scholar
  142. 142.
    Pasic MD, Samaan S, Yousef GM (2013) Genomic medicine: new frontiers and new challenges. Clin Chem 59:158–167. Scholar
  143. 143.
    Fischer HP (2008) Mathematical modeling of complex biological systems: from parts lists to understanding systems behavior. Alcohol Res Health 31:49–59PubMedPubMedCentralGoogle Scholar
  144. 144.
    Vera J, Wolkenhauer O (2008) A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol 90:399–415CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.National Centre for Bioinformatics, Functional Informatics Lab, Quaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations