Biostatistics in Clinical Oncology

  • Gaurav Roy
  • Atanu Bhattacharjee
  • Iqra Khan


There is a real need for the application of statistics in oncology research. Statistics is required to support oncology research through study design, analysis, and meta-analysis. This chapter is about the illustration of different statistics section important in oncology research.

The application of statistical methods, in the design and interpretation of oncology research, helps different substantial outcomes as compared to the classical approach.

Statistical methods can easily handle different complex issue. The issue may be due to data and study design in oncology. It is hoped that this statistical review will be a useful resource to the oncologist. It will promote quality experimental research in oncology.


  1. 1.
    Yuan Y, Hunt RH (2009) Systematic reviews: the good, the bad, and the ugly. Am J Gastroenterol 104(5):1086–1092CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gotzsche PC (2000) Why we need a broad perspective on meta-analysis. It may be crucially important for patients. BMJ 321(7261):585–586CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefGoogle Scholar
  4. 4.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748Google Scholar
  5. 5.
    Cochran WG (1994) The combination of estimates from different experiments. Biometrics 10:101–129CrossRefGoogle Scholar
  6. 6.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Galbraith RF (1988) A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med 7:889–894CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Higgins JPT, Green S (eds) (2009) Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2. The Cochrane Collaboration, 2009.
  10. 10.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62:e1–e34CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF (1999) Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement. Quality of reporting of meta-analyses. Lancet 354:1896–1900CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Antman EM, Lau J, Kupelnick B, Mosteller F, Chalmers TC (1992) A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts: treatments for myocardial infarction. JAMA 268:240–248CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oxman AD, Guyatt GH (1993) The science of reviewing research. Ann N Y Acad Sci 703:125–133CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Greenland S (1994) Invited commentary: a critical look at some popular meta-analytic methods. Am J Epidemiol 140:290–296CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ioannidis JP, Haidich AB, Pappa M, Pantazis N, Kokori SI, Tektonidou MG, Contopoulos-Ioannidis DG, Lau J (2001) Comparison of evidence of treatment effects in randomized and non-randomized studies. JAMA 286:821–830CrossRefGoogle Scholar
  17. 17.
    Haidich AB (2010) Meta-analysis in medical research. Hippokratia 14(1):29–37PubMedPubMedCentralGoogle Scholar
  18. 18.
    Chalmers I (1993) The Cochrane collaboration: preparing, maintaining, and disseminating systematic reviews of the effects of health care. Ann N Y Acad Sci 703:156–163CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Riley RD, Lambert PC, Abo-Zaid G (2010) Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340:c221CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tierney JF, Vale C, Riley R, Smith CT, Stewart L, Clarke M, Rovers M (2015) Individual participant data (IPD) meta-analyses of randomised controlled trials: guidance on their use. PLoS Med 12(7):e1001855CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kalter J, Sweegers MG, Verdonck-de Leeuw IM, Brug J, Buffart LM (2019) Development and use of a flexible data harmonization platform to facilitate the harmonization of individual patient data for meta-analyses. BMC Res Notes 12(1):164CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Buffart LM, Kalter J, Chinapaw MJ, Heymans MW, Aaronson NK, Courneya KS, Jacobsen PB, Newton RU, Verdonck-de Leeuw IM, Brug J (2013) Predicting Optimal Cancer Rehabilitation and Supportive Care (POLARIS): rationale and design for meta-analyses of individual patient data of randomized controlled trials that evaluate the effect of physical activity and psychosocial interventions on health-related quality of life in cancer survivors. Syst Rev 2(1):75CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Buffart LM, Kalter J, Sweegers MG, Courneya KS, Newton RU, Aaronson NK, Jacobsen PB, May AM, Galvão DA, Chinapaw MJ, Steindorf K, Irwin ML, Stuiver MM, Hayes S, Griffith KA, Lucia A, Mesters I, van Weert E, Knoop H, Goedendorp MM, Mutrie N, Daley AJ, McConnachie A, Bohus M, Thorsen L, Schulz KH, Short CE, James EL, Plotnikoff RC, Arbane G, Schmidt ME, Potthoff K, van Beurden M, Oldenburg HS, Sonke GS, van Harten WH, Garrod R, Schmitz KH, Winters-Stone KM, Velthuis MJ, Taaffe DR, van Mechelen W, Kersten MJ, Nollet F, Wenzel J, Wiskemann J, Verdonck-de Leeuw IM, Brug J (2017) Effects and moderators of exercise on quality of life and physical function in patients with cancer: an individual patient data meta-analysis of 34 RCTs. Cancer Treat Rev 52:91–104CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kalter J, Verdonck-de Leeuw IM, Sweegers MG, Aaronson NK, Jacobsen PB, Newton RU, Courneya KS, Aitken JF, Armes J, Arving C, Boersma LJ, Braamse AMJ, Brandberg Y, Chambers SK, Dekker J, Ell K, Ferguson RJ, Gielissen MFM, Glimelius B, Goedendorp MM, Graves KD, Heiney SP, Horne R, Hunter MS, Johansson B, Kimman ML, Knoop H, Meneses K, Northouse LL, Oldenburg HS, Prins JB, Savard J, van Beurden M, van den Berg SW, Brug J, Buffart LM (2018) Effects and moderators of psychosocial interventions on quality of life, and emotional and social function in patients with cancer: an individual patient data meta-analysis of 22 RCTs. Psychooncology 27(4):1150–1161CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gonzalez FJ (1995) Genetic polymorphism and cancer susceptibility: 14th Sapporo Cancer seminar. Cancer Res 55:710–715PubMedPubMedCentralGoogle Scholar
  26. 26.
    Pabalan N, Bapat B, Sung L, Jarjanazi H, Francisco-Pabalan O, Ozcelik H (2008) Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations: a meta-analysis. Cancer Epidemiol Biomark Prev 17:2773–2781CrossRefGoogle Scholar
  27. 27.
    Pabalan N, Francisco-Pabalan O, Sung L, Jarjanazi H, Ozcelik H (2010) Meta-analysis of two polymorphisms, Lys751Gln and Asp312Asn, in the DNA repair gene, XPD (ERCC2) with breast cancer. Breast Cancer Res Treat 17:27Google Scholar
  28. 28.
    Brennan P (2012) Gene-environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis 23(3):381–387CrossRefGoogle Scholar
  29. 29.
    Zintzaras E, Lau J (2008) Trends in meta-analysis of genetic association studies. J Hum Genet 53:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Taioli E (2005) Biomarkers of genetic susceptibility to cancer: applications to epidemiological studies. Future Oncol 1:51–56CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ioannidis JP (2004) The value of meta-analysis in rheumatology research. Autoimmun Rev 3(Suppl 1):S57–S59PubMedPubMedCentralGoogle Scholar
  32. 32.
    Pabalan N (2010) Meta-analysis in cancer genetics. Asian Pacific J Cancer Prev 11:33–38Google Scholar
  33. 33.
    Morris RD (1994) Meta-analysis in cancer epidemiology. Environ Health Perspect 102(Suppl 8):61–66CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Guyatt GH, Feeny DH, Patrick DL (1993) Measuring health-related quality of life. Ann Intern Med 118(8):622–629CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Spilker B (ed) (1996) Quality of life and pharmacoeconomics in clinical trials. Lippincott-Raven, Philadelphia, pp 1–1259Google Scholar
  36. 36.
    Testa MA, Simonson DC (1996) Assessment of quality-of-life outcomes. N Engl J Med 334(13):835–840CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wilson IB, Cleary PD (1995) Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA 273(1):59–65CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Oldridge N, Gottlieb M, Guyatt G, Jones N, Streiner D, Feeny D (1998) Predictors of health-related quality of life with cardiac rehabilitation after acute myocardial infarction. J Cardpulm Rehabil 18(2):95–103CrossRefGoogle Scholar
  39. 39.
    Boscolo-Rizzo P, Maronato F, Marchiori C, Gava A, Da Mosto MC (2008) Long-term quality of life after total laryngectomy and postoperative radiotherapy versus concurrent chemoradiotherapy for laryngeal preservation. Laryngoscope 118(2):300–306CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hörnquist JO (1990) Quality of life: concept and assessment. Scand J Soc Med 18(1):69–79CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Thatcher N, Hopwood P, Anderson H (1997) Improving quality of life in patients with non-small cell lung cancer: research experience with gemcitabine. Eur J Cancer 33(Suppl 1):S8–S13CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mauer ME, Bottomley A, Taphoorn MJ (2008) Evaluating health-related quality of life and symptom burden in brain tumour patients: instruments for use in experimental trials and clinical practice. Curr Opin Neurol 21(6):745–753CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hiatt RA, Breen N (2008) The social determinants of cancer: a challenge for trans disciplinary science. Am J Prev Med 35:S141–S150CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Meisel JL, Domchek SM, Vonderheide RH, Giobbie-Hurder A, Lin NU, Winer EP, Partridge AH (2012) Quality of life in long-term survivors of metastatic breast cancer. Clin Breast Cancer 12(2):119–126CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zebrack BJ, Landier W (2011) The perceived impact of cancer on quality of life for post-treatment survivors of childhood cancer. Qual Life Res 20(10):1595–1608CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Osoba D (2011) Health-related quality of life and cancer clinical trials. Ther Adv Med Oncol 3:57–71CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    American Society of Clinical Oncology (1996) Outcomes of cancer treatment for technology assessment and cancer treatment guidelines. J Clin Oncol 14:671–679CrossRefGoogle Scholar
  48. 48.
    Efficace F, Fayers P, Pusic A, Cemal Y, Yanagawa J, Jacobs M, la Sala A, Cafaro V, Whale K, Rees J, Blazeby J (2015) European Organization for Research and Treatment of Cancer quality-of-life group (patient-reported outcome measurements over time in oncology registry). Quality of patient-reported outcome reporting across cancer randomized controlled trials according to the CONSORT patient-reported outcome extension: a pooled analysis of 557 trials. Cancer 121:3335–3342CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Stockler MR, Hilpert F, Friedlander M et al (2014) Patient-reported outcome results from the open-label phase III AURELIA trial evaluating bevacizumab-containing therapy for platinum-resistant ovarian cancer. J Clin Oncol 32:1309–1316CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stockler MR, Hilpert F, Friedlander M, King MT, Wenzel L, Lee CK, Joly F, de Gregorio N, Arranz JA, Mirza MR, Sorio R, Freudensprung U, Sneller V, Hales G, Pujade-Lauraine E (2014) Patient-reported outcome results from the open-label phase III AURELIA trial evaluating bevacizumab-containing therapy for platinum-resistant ovarian cancer. J Clin Oncol 32(13):1309–1316CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Parab S, Bhalerao S (2010) Choosing statistical test. Int J Ayurveda Res 1(3):187–191CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Roy J, Winter C, Schroeder M (2016) Meta-analysis of Cancer gene profiling data. Methods Mol Biol 1381:211–222CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Gaurav Roy
    • 1
  • Atanu Bhattacharjee
    • 2
  • Iqra Khan
    • 3
  1. 1.Molecular Genetics Laboratory, Institute of Medical Genetics and Genomics, Sir Ganga Ram HospitalNew DelhiIndia
  2. 2.Section of Biostatistics, Centre for Cancer EpidemiologyTata Memorial Centre & Homi Bhaba National InstituteMumbaiIndia
  3. 3.Microbiology and Biotechnology Research Lab, Fatima Jinnah Women UniversityOld PresidencyPakistan

Personalised recommendations