DNA Damage Response Pathways in Cancer Predisposition and Metastasis

  • Saima Shakil MalikEmail author
  • Iqra


Genes involved in DNA damage response play pivotal functions in maintaining genome health. Upregulated DNA damage response and repair genes are responsible for initiating carcinogenesis and elevated resistance in cancerous cells to DNA-damaging therapy. Recent studies have confirmed the involvement of various genes in DNA repair which have additional functions in carcinogenesis specifically working as co-transcriptional factors. Though, defective DNA repair genes are linked with cancer initiation, they have more controversial roles in tumour progression and seem to be dependent on tumour type. The current chapter discusses the role of various DNA damage repair pathways along with their genes in cancer predisposition and metastasis.


Cancer predisposition Metastasis DNA damage response DNA repair pathways 


  1. 1.
    Srivastava R, Mishra N, Singh UM, Srivastava R (2016) Genotoxicity: mechanisms and its impact on human diseases. Octa J Biosci 2016:4Google Scholar
  2. 2.
    Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, Pei D, Zheng J (2015) DNA damage response–a double-edged sword in cancer prevention and cancer therapy. Cancer Lett 358(1):8–16CrossRefGoogle Scholar
  3. 3.
    Jeggo PA, Pearl LH, Carr AM (2016) DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 16(1):35CrossRefGoogle Scholar
  4. 4.
    Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schwertman P, Bekker-Jensen S, Mailand N (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev 17(6):379CrossRefGoogle Scholar
  6. 6.
    Nakad R, Schumacher B (2016) DNA damage response and immune defense: links and mechanisms. Front Genet 7:147CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gorbunova V, Seluanov A (2016) DNA double strand break repair, aging and the chromatin connection. Mutat Res 788:2–6CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA (2015) DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb Perspect Med 5(10):a025130CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168(4):644–656CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8(9):a019505CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nielsen FC, van Overeem Hansen T, Sørensen CS (2016) Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 16(9):599CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Malik SS, Masood N, Asif M, Ahmed P, Shah ZU, Khan JS (2019) Expressional analysis of MLH1 and MSH2 in breast cancer. Curr Probl Cancer 43(2):97–105CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li Q, Damish AW, Frazier Z, Liu D, Reznichenko E, Kamburov A, Bell A, Zhao H, Jordan EJ, Gao SP (2019) ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer. Clin Cancer Res 25(3):977–988CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Murfuni I, Rass U (2016) Targeting homologous recombination repair in cancer. In: DNA repair in cancer therapy. Elsevier, London, pp 225–275CrossRefGoogle Scholar
  15. 15.
    O’Connor MJ (2015) Targeting the DNA damage response in cancer. Mol Cell 60(4):547–560CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Goldstein M, Kastan MB (2015) The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 66:129–143CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kelley MR, Logsdon D, Fishel ML (2014) Targeting DNA repair pathways for cancer treatment: what’s new? Future Oncol 10(7):1215–1237CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jdey W, Thierry S, Russo C, Devun F, Al Abo M, Noguiez-Hellin P, Sun J-S, Barillot E, Zinovyev A, Kuperstein I (2017) Drug-driven synthetic lethality: bypassing tumor cell genetics with a combination of AsiDNA and PARP inhibitors. Clin Cancer Res 23(4):1001–1011CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gorgoulis VG, Pefani DE, Pateras IS, Trougakos IP (2018) Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 246(1):12–40CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert PF (2015) Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 124(6):713–721CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16(1):20CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tiwari V, Wilson DM (2019) DNA damage and associated DNA repair defects in disease and premature aging. Am J Hum Genet 105(2):237–257CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Llinas-Arias P, Esteller M (2017) Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol 7(9):170152CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS (2018) Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep 23(1):239–254CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gao D, Herman JG, Guo M (2016) The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget 7(24):37331PubMedPubMedCentralGoogle Scholar
  26. 26.
    Bauer NC, Corbett AH, Doetsch PW (2015) The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 43(21):10083–10101PubMedPubMedCentralGoogle Scholar
  27. 27.
    Malaiyandi LM, Potempa LA, Marschalk N, Jungsuwadee P, Dineley KE (2018) Alkylating-agent cytotoxicity associated with O6-methylguanine. In: Apoptosis and beyond: the many ways cells die. Wiley, Hoboken, pp 427–431CrossRefGoogle Scholar
  28. 28.
    Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T, Abolghasemi M, Qujeq D, Maniati M, Amani J (2019) The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer. J Cell Biochem 120(2):1080–1105CrossRefGoogle Scholar
  29. 29.
    Hiddinga BI, Pauwels P, Janssens A, van Meerbeeck JP (2017) O6-methylguanine-DNA methyltransferase (MGMT): a drugable target in lung cancer? Lung Cancer 107:91–99CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rapkins RW, Wang F, Nguyen HN, Cloughesy TF, Lai A, Ha W, Nowak AK, Hitchins MP, McDonald KL (2015) The MGMT promoter SNP rs16906252 is a risk factor for MGMT methylation in glioblastoma and is predictive of response to temozolomide. Neuro-Oncology 17(12):1589–1598CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Misawa K, Mochizuki D, Imai A, Endo S, Mima M, Misawa Y, Kanazawa T, Carey TE, Mineta H (2016) Prognostic value of aberrant promoter hypermethylation of tumor-related genes in early-stage head and neck cancer. Oncotarget 7(18):26087CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kuroiwa-Trzmielina J, Wang F, Rapkins RW, Ward RL, Buchanan DD, Win AK, Clendenning M, Rosty C, Southey MC, Winship IM (2016) SNP rs16906252C> T is an expression and methylation quantitative trait locus associated with an increased risk of developing MGMT-methylated colorectal cancer. Clin Cancer Res 22(24):6266–6277CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Paydar P, Asadikaram G, Nejad HZ, Akbari H, Abolhassani M, Moazed V, Nematollahi MH, Ebrahimi G, Fallah H (2019) Epigenetic modulation of BRCA-1 and MGMT genes, and histones H4 and H3 are associated with breast tumors. J Cell Biochem 120(8):13726–13736CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yu D, Cao T, Han Y-D, Huang F-S (2016) Relationships between MGMT promoter methylation and gastric cancer: a meta-analysis. OncoTargets Ther 9:6049CrossRefGoogle Scholar
  35. 35.
    Malik SS, Mubarik S, Masood N, Khadim MT (2018) An insight into clinical outcome of XPG polymorphisms in breast cancer. Mol Biol Rep 45(6):2369–2375CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Spivak G (2015) Nucleotide excision repair in humans. DNA Repair 36:13–18CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Broustas CG, Lieberman HB (2014) DNA damage response genes and the development of cancer metastasis. Radiat Res 181(2):111–130CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, Turchi JJ (2016) DNA repair targeted therapy: the past or future of cancer treatment? Pharmacol Ther 160:65–83CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dexheimer TS (2013) DNA repair pathways and mechanisms. In: Mathews LA, Cabarcas SM, Hurt EM (eds) DNA repair of cancer stem cells. Springer, Dordrecht, pp 19–32. Scholar
  40. 40.
    Melis JP, van Steeg H, Luijten M (2013) Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal 18(18):2409–2419CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56(6):777–785CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nemzow L, Lubin A, Zhang L, Gong F (2015) XPC: going where no DNA damage sensor has gone before. DNA Repair 36:19–27CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev 15(7):465CrossRefGoogle Scholar
  44. 44.
    Song X, Wang S, Hong X, Li X, Zhao X, Huai C, Chen H, Gao Z, Qian J, Wang J (2017) Single nucleotide polymorphisms of nucleotide excision repair pathway are significantly associated with outcomes of platinum-based chemotherapy in lung cancer. Sci Rep 7(1):11785CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mucha B, Markiewicz L, Cuchra M, Szymczak I, Przybylowska-Sygut K, Dziki A, Majsterek I, Dziki L (2017) Nucleotide excision repair capacity and XPC, XPD gene polymorphism modulate colorectal cancer risk. Clin Colorectal Cancer 17:e435–e441CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li Y-L, Wei F, Li Y-P, Zhang L-H, Bai Y-Z (2017) A case-control study on association of nucleotide excision repair polymorphisms and its interaction with environment factors with the susceptibility to non-melanoma skin cancer. Oncotarget 8(46):80994PubMedPubMedCentralGoogle Scholar
  47. 47.
    Romanowicz H, Strapagiel D, Słomka M, Sobalska-Kwapis M, Kępka E, Siewierska-Górska A, Zadrożny M, Bieńkiewicz J, Smolarz B (2017) New single nucleotide polymorphisms (SNPs) in homologous recombination repair genes detected by microarray analysis in Polish breast cancer patients. Clin Exp Med 17(4):541–546CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bailey MH, Ding L (2018) Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep 23(1):239–254CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shenoy N, Dronca R, Quevedo F, Boorjian SA, Cheville J, Costello B, Kohli M, Witzig T, Pagliaro L (2017) Low hypoxia inducible factor-1α (HIF-1α) expression in testicular germ cell tumors—a major reason for enhanced chemosensitivity? Chin J Cancer Res 29(4):374CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sankhwar M, Sankhwar SN, Bansal SK, Gupta G, Rajender S (2016) Polymorphisms in the XPC gene affect urinary bladder cancer risk: a case-control study, meta-analyses and trial sequential analyses. Sci Rep 6:27018CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Awuah SG, Riddell IA, Lippard SJ (2017) Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc Natl Acad Sci 114(5):950–955CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Le May N, Calmels N, Abiayad Y, Boukli L, Semer M (2018) Xeroderma pigmentosum groups C and A in Algerian patients with deregulation of both transcription and DNA repair. J Case Rep Stud 6(4):401Google Scholar
  53. 53.
    Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev 7(5):335CrossRefGoogle Scholar
  54. 54.
    Naidu MD, Mason JM, Pica RV, Fung H, Peña LA (2010) Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1. J Radiat Res 51(4):393–404CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Groothuizen FS, Sixma TK (2016) The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair 38:14–23CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li G-M (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153(3):590–600CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li G-M (2014) New insights and challenges in mismatch repair: getting over the chromatin hurdle. DNA Repair 19:48–54CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Reyes GX, Schmidt TT, Kolodner RD, Hombauer H (2015) New insights into the mechanism of DNA mismatch repair. Chromosoma 124(4):443–462CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Xie C, Sheng H, Zhang N, Li S, Wei X, Zheng X (2016) Association of MSH6 mutation with glioma susceptibility, drug resistance and progression. Mol Clin Oncol 5(2):236–240CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zauber P, Marotta S, Sabbath-Solitare M (2017) Molecular genetic changes in benign colorectal tumors synchronous with microsatellite unstable carcinomas do not support a field defect. Int J Mol Epidemiol Genet 8(3):27PubMedPubMedCentralGoogle Scholar
  61. 61.
    Zarandi A, Irani S, Savabkar S, Chaleshi V, Ghavideldarestani M, Mirfakhraie R, Khodadoostan M, Nazemalhosseini-Mojarad E, Aghdaei HA (2017) Evaluation of promoter methylation status of MLH1 gene in Iranian patients with colorectal tumors and adenoma polyps. Gastroenterol Hepatol Bed Bench 10(Suppl 1):S117PubMedPubMedCentralGoogle Scholar
  62. 62.
    Tarancón-Diez M, Büttner R, Friedrichs N (2019) Enhanced tumoral MLH1-expression in MLH1-/PMS2-deficient colon cancer is indicative of sporadic colon cancer and not HNPCC. Pathol Oncol Res.
  63. 63.
    Ma Y, Chen Y, Petersen I (2017) Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer. Pathol Res Pract 213(4):333–338CrossRefGoogle Scholar
  64. 64.
    Fan Y, Wang Y, Fu S, Yang L, Lin S, Fan Q, Wen Q (2018) The diagnostic role of DNA methylation in sporadic endometrial cancer: a systematic review and meta-analysis. Oncotarget 9(9):8642CrossRefGoogle Scholar
  65. 65.
    Hu G, Qin L, Zhang X, Ye G, Huang T (2018) Epigenetic silencing of the MLH1 promoter in relation to the development of gastric cancer and its use as a biomarker for patients with microsatellite instability: a systematic analysis. Cell Physiol Biochem 45(1):148–162CrossRefGoogle Scholar
  66. 66.
    Jaiswal A, Williamson E, Patel B, Srinivasan G, Kong K, Lomelino C, Narayan S, Hromas R (2019) Splicing component ISY1 interacts with APE1 and regulates base excision repair. AACR, PhiladelphiaGoogle Scholar
  67. 67.
    Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2008) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30(1):2–10CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Norjmaa B, Tulgaa K, Saitoh T (2016) Base excision repair pathway and polymorphisms of xrcc1 gene. J Mol Pathol Epidemiol 1(1):1–4Google Scholar
  69. 69.
    Seibold P, Behrens S, Schmezer P, Helmbold I, Barnett G, Coles C, Yarnold J, Talbot CJ, Imai T, Azria D (2015) XRCC1 polymorphism associated with late toxicity after radiation therapy in breast cancer patients. Int J Radiat Oncol 92(5):1084–1092CrossRefGoogle Scholar
  70. 70.
    AlMutairi F, Ali Khan Pathan A, Alanazi M, Shalaby M, Alabdulkarim HA, Alamri A, Al Naeem A, Elrobh M, Shaik JP, Khan W (2015) Association of DNA repair gene APE1 Asp148Glu polymorphism with breast cancer risk. Dis Markers 2015:869512CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Du Y, He Y, Mei Z, Qian L, Shi J, Jie Z (2016) Association between genetic polymorphisms in XPD and XRCC1 genes and risks of non-small cell lung cancer in East Chinese Han population. Clin Respir J 10(3):311–317CrossRefGoogle Scholar
  72. 72.
    Han B, Guo Z, Ma Y, Kang S, Wang Y, Wei Q, Wu X (2015) Association of GSTP1 and XRCC1 gene polymorphisms with clinical outcome of advanced non-small cell lung cancer patients with cisplatin-based chemotherapy. Int J Clin Exp Pathol 8(4):4113PubMedPubMedCentralGoogle Scholar
  73. 73.
    Dylawerska A, Barczak W, Wegner A, Golusinski W, Suchorska WM (2017) Association of DNA repair genes polymorphisms and mutations with increased risk of head and neck cancer: a review. Med Oncol 34(12):197CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Huang S-F, Chien H-T, Liao C-T, Wang H-M, Wang Y-H (2019) Roles of XRCC1 genetic polymorphism in head and neck cancer patients receiving radiation therapy in Taiwan. AACR, PhiladelphiaGoogle Scholar
  75. 75.
    Feki-Tounsi M, Khlifi R, Louati I, Fourati M, Mhiri M-N, Hamza-Chaffai A, Rebai A (2017) Polymorphisms in XRCC1, ERCC2, and ERCC3 DNA repair genes, CYP1A1 xenobiotic metabolism gene, and tobacco are associated with bladder cancer susceptibility in Tunisian population. Environ Sci Pollut Res 24(28):22476–22484CrossRefGoogle Scholar
  76. 76.
    Zhong J-H, Zhao Z, Liu J, Yu H-L, Zhou J-Y, Shi R (2016) Association between APE1 Asp148Glu polymorphism and the risk of urinary cancers: a meta-analysis of 18 case–control studies. OncoTargets Ther 9:1499Google Scholar
  77. 77.
    Jin E-H, Kim J, Lee S-I, Hong JH (2015) Association between polymorphisms in APE1 and XRCC1 and the risk of gastric cancer in Korean population. Int J Clin Exp Med 8(7):11484PubMedPubMedCentralGoogle Scholar
  78. 78.
    Huang HI, Chen CH, Wang SH, Wang LH, Lin YC (2019) Effects of APE1 Asp148Glu polymorphisms on OPMD malignant transformation, and on susceptibility to and overall survival of oral cancer in Taiwan. Head Neck 41(6):1557–1564CrossRefGoogle Scholar
  79. 79.
    Das S, Nath S, Bhowmik A, Ghosh SK, Choudhury Y (2016) Association between OGG1 Ser326Cys polymorphism and risk of upper aero-digestive tract and gastrointestinal cancers: a meta-analysis. Springerplus 5(1):227CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhou P-T, Li B, Ji J, Wang M-M, Gao C-F (2015) A systematic review and meta-analysis of the association between OGG1 Ser326Cys polymorphism and cancers. Med Oncol 32(2):31CrossRefGoogle Scholar
  81. 81.
    Lai C-Y, Hsieh L-L, Tang R, Santella RM, Chang-Chieh CR, Yeh C-C (2016) Association between polymorphisms of APE1 and OGG1 and risk of colorectal cancer in Taiwan. World J Gastroenterol 22(12):3372CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nielsen M, Hes F, Nagengast F, Weiss M, Mathus-Vliegen E, Morreau H, Breuning M, Wijnen J, Tops C, Vasen H (2007) Germline mutations in APC and MUTYH are responsible for the majority of families with attenuated familial adenomatous polyposis. Clin Genet 71(5):427–433CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tanskanen T (2018) Genetic predisposition to colorectal cancer in young patients and in the general populationGoogle Scholar
  84. 84.
    Shinmura K, Yokota J (2001) The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid Redox Signal 3(4):597–609CrossRefGoogle Scholar
  85. 85.
    Cadet J, Davies KJ (2017) Oxidative DNA damage & repair: an introduction. Free Radic Biol Med 107:2–12CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Peng B, Hurt EM, Hodge DR, Thomas SB, Farrar WL (2006) DNA hypermethylation and partial gene silencing of human thymine-DNA glycosylase in multiple myeloma cell lines. Epigenetics 1(3):138–145CrossRefGoogle Scholar
  87. 87.
    Maher RL, Wallace SS, Pederson DS (2019) The lyase activity of bifunctional DNA glycosylases and the 3′-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes. Nucleic Acids Res 47(6):2922–2931CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ferreira J, Ramos AA, Almeida T, Azqueta A, Rocha E (2018) Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: a mini review. Phytomedicine 48:84–93CrossRefGoogle Scholar
  89. 89.
    Poletto M, Lirussi L, Antoniali G, Tell G (2017) The abasic endonuclease APE1: much more than a DNA repair enzyme. In: The base excision repair pathway: molecular mechanisms and role in disease development and therapeutic design. World Scientific, Singapore, pp 219–251CrossRefGoogle Scholar
  90. 90.
    Malfatti MC, Gerratana L, Dalla E, Isola M, Damante G, Di Loreto C, Puglisi F, Tell G (2019) APE1 and NPM1 protect cancer cells from platinum compounds cytotoxicity and their expression pattern has a prognostic value in TNBC. J Exp Clin Cancer Res 38(1):309CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Starcevic D, Dalal S, Sweasy JB (2004) Is there a link between DNA polymerase beta and cancer? Cell Cycle 3(8):996–999CrossRefGoogle Scholar
  92. 92.
    Sobol RW (2012) Genome instability caused by a germline mutation in the human DNA repair gene POLB. PLoS Genet 8(11):e1003086CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Koturbash I, Baker M, Loree J, Kutanzi K, Hudson D, Pogribny I, Sedelnikova O, Bonner W, Kovalchuk O (2006) Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo. Int J Radiat Oncol 66(2):327–330CrossRefGoogle Scholar
  94. 94.
    Mladenov E, Magin S, Soni A (2016) Iliakis G DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. In: Seminars in cancer biology. Elsevier, Amsterdam, pp 51–64Google Scholar
  95. 95.
    Sullivan MR, Prakash R, Mihalevic MJ, Baird JM, Jasin M, Bernstein KA (2018) Abstract A08: a novel system determines the functional significance of ovarian tumor mutations in the homologous recombination gene RAD51C. AACR, PhiladelphiaGoogle Scholar
  96. 96.
    Majidinia M, Yousefi B (2017) DNA repair and damage pathways in breast cancer development and therapy. DNA Repair 54:22–29CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Arts-de Jong M, de Bock GH, van Asperen CJ, Mourits MJ, de Hullu JA, Kets CM (2016) Germline BRCA1/2 mutation testing is indicated in every patient with epithelial ovarian cancer: a systematic review. Eur J Cancer 61:137–145CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, Bernards SS, Casadei S, Yi Q, Burger RA (2016) Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2(4):482–490CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Lal G, Liu G, Schmocker B, Kaurah P, Ozcelik H, Narod SA, Redston M, Gallinger S (2000) Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res 60(2):409–416PubMedPubMedCentralGoogle Scholar
  100. 100.
    Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, Mitchell G, Fried G, Stemmer SM, Hubert A (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33(3):244CrossRefGoogle Scholar
  101. 101.
    Kerr L, Rewhorn MJ, Longmuir M, Fraser S, Walsh S, Andrew N, Leung HY (2016) A cohort analysis of men with a family history of BRCA1/2 and Lynch mutations for prostate cancer. BMC Cancer 16(1):529CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Prakash R, Zhang Y, Feng W, Jasin M (2015) Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 7(4):a016600CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Nowak J, Świątek-Kościelna B, Kałużna EM, Rembowska J, Dzikiewicz-Krawczyk A, Zawada M, Januszkiewicz-Lewandowska D (2017) Effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with NBN mutations. AMS 13(2):283PubMedPubMedCentralGoogle Scholar
  105. 105.
    Cybulski C, Gorski B, Dębniak T, Gliniewicz B, Mierzejewski M, Masojć B, Jakubowska A, Matyjasik J, Złowocka E, Sikorski A (2004) NBS1 is a prostate cancer susceptibility gene. Cancer Res 64(4):1215–1219CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kim N-G, Choi YR, Baek MJ, Kim YH, Kang H, Kim NK, Min JS, Kim H (2001) Frameshift mutations at coding mononucleotide repeats of the hRAD50 gene in gastrointestinal carcinomas with microsatellite instability. Cancer Res 61(1):36–38PubMedPubMedCentralGoogle Scholar
  107. 107.
    Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17(18):5497–5508CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    O’Driscoll M, Cerosaletti KM, Girard P-M, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J (2001) DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8(6):1175–1185CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Pannicke U, Hönig M, Schulze I, Rohr J, Heinz GA, Braun S, Janz I, Rump EM, Seidel MG, Matthes-Martin S (2010) The most frequent DCLRE1C (ARTEMIS) mutations are based on homologous recombination events. Hum Mutat 31(2):197–207CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Saito S, Ishihara S, Kazama S, Tsuno N, Kitayama J (2003) Prediction of tumor radiosensitivity in rectal carcinoma based on p53 and Ku70 expression. J Exp Clin Cancer Res 22(2):223–228PubMedGoogle Scholar
  111. 111.
    Ramzan Z, Nassri AB, Huerta S (2014) Genotypic characteristics of resistant tumors to pre-operative ionizing radiation in rectal cancer. World J Gastrointest Oncol 6(7):194CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Tsuno N, Kazama S, Kitayama J, Suzuki N, Nagawa H (2002) The expression pattern of Ku correlates with tumor radiosensitivity and disease free survival in patients with rectal carcinoma. Cancer 95(6):1199–1205CrossRefGoogle Scholar
  113. 113.
    Agboola AO, Ebili HO, Iyawe VO, Banjo AA, Salami BA, Rakha EA, Nolan CC, Ellis IO, Green AR (2017) Clinicopathological and molecular characteristics of Ku 70/80 expression in Nigerian breast cancer and its potential therapeutic implications. Pathol Res Pract 213(1):27–33CrossRefGoogle Scholar
  114. 114.
    Takada Y, Someya M, Matsumoto Y, Satoh M, Nakata K, Hori M, Saito M, Hirokawa N, Tateoka K, Teramoto M (2016) Influence of Ku86 and XRCC4 expression in uterine cervical cancer on the response to preoperative radiotherapy. Med Mol Morphol 49(4):210–216CrossRefGoogle Scholar
  115. 115.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Allen S (2018) Understanding mechanisms of metastasis of aggressive breast cancers via microfluidic meansGoogle Scholar
  117. 117.
    Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S (2017) Tumor angiogenesis revisited: regulators and clinical implications. Med Res Rev 37(6):1231–1274CrossRefGoogle Scholar
  118. 118.
    Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, Kharaziha P (2019) Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol 234(10):16885–16903CrossRefGoogle Scholar
  119. 119.
    Jackson M, Marks L, May GH, Wilson JB (2018) The genetic basis of disease. Essays Biochem 62(5):643–723CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Groß M (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Mallick B (2019) AGO-driven non-coding RNAs: codes to decode the therapeutics of diseases. Academic, LondonGoogle Scholar
  123. 123.
    Phan NN, Wang CY, Chen CF, Sun Z, Lai MD, Lin YC (2017) Voltage-gated calcium channels: novel targets for cancer therapy. Oncol Lett 14(2):2059–2074CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Zakaria R, Platt-Higgins A, Rathi N, Crooks D, Brodbelt A, Chavredakis E, Lawson D, Jenkinson MD, Rudland PS (2016) Metastasis-inducing proteins are widely expressed in human brain metastases and associated with intracranial progression and radiation response. Br J Cancer 114(10):1101CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Mocellin S, Bertazza L, Benna C, Pilati P (2012) Circumventing melanoma chemoresistance by targeting DNA repair. Curr Med Chem 19(23):3893–3899CrossRefGoogle Scholar
  126. 126.
    Dogrusöz M, Ruschel Trasel A, Cao J, Ҫolak S, van Pelt SI, Kroes WG, Teunisse AF, Alsafadi S, van Duinen SG, Luyten GP (2019) Differential expression of DNA repair genes in prognostically-favorable versus unfavorable uveal melanoma. Cancer 11(8):1104CrossRefGoogle Scholar
  127. 127.
    Kaplan AR, Glazer PM (2019) Impact of hypoxia on DNA repair and genome integrity. Mutagenesis. gez019,
  128. 128.
    Grichnik JM (2006) Genomic instability and tumor stem cells. J Investig Dermatol 126(6):1214–1216CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Kauffmann A, Rosselli F, Lazar V, Winnepenninckx V, Mansuet-Lupo A, Dessen P, Van den Oord J, Spatz A, Sarasin A (2008) High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene 27(5):565CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239CrossRefGoogle Scholar
  131. 131.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Robinson DR, Wu Y-M, Lonigro RJ, Vats P, Cobain E, Everett J, Cao X, Rabban E, Kumar-Sinha C, Raymond V (2017) Integrative clinical genomics of metastatic cancer. Nature 548(7667):297CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Bodmer W (2008) Genetic instability is not a requirement for tumor development. Cancer Res 68(10):3558–3561CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Chirnomas D, Taniguchi T, de la Vega M, Vaidya AP, Vasserman M, Hartman A-R, Kennedy R, Foster R, Mahoney J, Seiden MV (2006) Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol Cancer Ther 5(4):952–961CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Ta HQ, Gioeli D (2014) The convergence of DNA damage checkpoint pathways and androgen receptor signaling in prostate cancer. Endocr Relat Cancer 21(5):R395–R407CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Attari MMA, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi H, Yousefi B, Majidinia M (2019) DNA damage response and repair in ovarian cancer: potential targets for therapeutic strategies. DNA Repair 80:59–84CrossRefGoogle Scholar
  139. 139.
    Alblihy A, Mesquita KA, Sadiq MT, Madhusudan S (2019) Development and implementation of precision therapies targeting base-excision DNA repair in BRCA1-associated tumors. Exp Rev Precis Med Drug Dev 4(1):11–25CrossRefGoogle Scholar
  140. 140.
    Doak SH (2018) Exposure to engineered nanomaterials: impact on DNA repair pathways. Int J Mol Sci 18:1515Google Scholar
  141. 141.
    Liu T, Huang J (2016) DNA end resection: facts and mechanisms. Genomics Proteomics Bioinformatics 14(3):126–130CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG (2017) p53 and RAD9, the DNA damage response, and regulation of transcription networks. Radiat Res 187(4):424–432CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Mavragani I, Nikitaki Z, Souli M, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas A (2017) Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancer 9(7):91CrossRefGoogle Scholar
  144. 144.
    Vodicka P, Musak L, Vodickova L, Vodenkova S, Catalano C, Kroupa M, Naccarati A, Polivkova Z, Vymetalkova V, Försti A (2018) Genetic variation of acquired structural chromosomal aberrations. Mutat Res 836:13–21CrossRefGoogle Scholar
  145. 145.
    Lazzerini-Denchi E, Sfeir A (2016) Stop pulling my strings—what telomeres taught us about the DNA damage response. Nat Rev 17(6):364CrossRefGoogle Scholar
  146. 146.
    Lieberman HB (2006) Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem 97(4):690–697CrossRefGoogle Scholar
  147. 147.
    Lieberman HB, Rai AJ, Friedman RA, Hopkins KM, Broustas CG (2018) Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management. Transl Cancer Res 7(Suppl 6):S651CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev 14(4):197CrossRefGoogle Scholar
  149. 149.
    Economopoulou M, Langer HF, Celeste A, Orlova VV, Choi EY, Ma M, Vassilopoulos A, Callen E, Deng C, Bassing CH (2009) Histone H2AX is integral to hypoxia-driven neovascularization. Nat Med 15(5):553CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Wan R, Crowe DL (2012) Haploinsufficiency of the Nijmegen breakage syndrome 1 gene increases mammary tumor latency and metastasis. Int J Oncol 41(1):345–352PubMedGoogle Scholar
  151. 151.
    Bozko P, Scholta T, Bui K, Toulany M, Rodemann H, Malek N (2018) Notch1-Cyclin E-p27kip1 and RAD17 form a network of proteins which control cellular proliferation and DNA damage response in cholangiocarcinoma. Z Gastroenterol 56(1):A4Google Scholar
  152. 152.
    Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med 6(5):a026070CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Soliman S, Orlacchio A, Tessari A, Capece M, Visone R, Croce C, Palmieri D, Coppola V (2019) RANBP9 presence affects levels of Tip60 and activated p53 in lung cancer cells in response to DNA damage. AACR, PhiladelphiaGoogle Scholar
  154. 154.
    Brill E, Yokoyama T, Nair J, Yu M, Ahn Y-R, Lee J-M (2017) Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget 8(67):111026CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Alsiary R, Brownhill SC, Brüning-Richardson A, Hutson R, Griffin N, Morrison EE, Bond J, Burchill SA, Bell SM (2018) Expression analysis of the MCPH1/BRIT1 and BRCA1 tumor suppressor genes and telomerase splice variants in epithelial ovarian cancer. Gene 672:34–44CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Lim PX, Sutherland J, Noonan R, Dananberg A, Holloman W, Smogorzewska A, Jasin M (2017) Abstract A27: assessing somatic tumor-associated RAD51 mutations and screening for novel dominant-interfering RAD51 proteins. AACR, PhiladelphiaGoogle Scholar
  157. 157.
    Yamamoto Y, Koma H, Yagami T (2015) Localization of 14-3-3δ/ξ on the neuronal cell surface. Exp Cell Res 338(2):149–161CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Takaoka M, Miki Y (2018) BRCA1 gene: function and deficiency. Int J Clin Oncol 23(1):36–44CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Gabrielli B, Burgess A (2016) Cdc25 family phosphatases in cancer. In: Protein tyrosine phosphatases in cancer. Springer, New York, pp 283–306CrossRefGoogle Scholar
  160. 160.
    Nyberg KA (2003) Analysis of RAD9 functions: roles in the checkpoint response, DNA damage processing, and prevention of genomic instability. The University of ArizonaGoogle Scholar
  161. 161.
    Kim YJ, Kim H-J, Kim HL, Kim HJ, Kim HS, Lee TR, Shin DW, Seo YR (2017) A protective mechanism of visible red light in normal human dermal fibroblasts: enhancement of GADD45A-Mediated DNA repair activity. J Investig Dermatol 137(2):466–474CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Sheng Y, Xu M, Li C, Xiong Y, Yang Y, Kuang X, Wang D, Yang X (2018) Nm23-H1 is involved in the repair of ionizing radiation-induced DNA double-strand breaks in the A549 lung cancer cell line. BMC Cancer 18(1):710CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Maga G, Hubscher U (2008) Repair and translesion DNA polymerases as anticancer drug targets. Anti Cancer Agents Med Chem 8(4):431–447CrossRefGoogle Scholar
  164. 164.
    Bu D, Tomlinson G, Lewis CM, Zhang C, Kildebeck E, Euhus DM (2006) An intronic polymorphism associated with increased XRCC1 expression, reduced apoptosis and familial breast cancer. Breast Cancer Res Treat 99(3):257–265CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Xu P, Cai X, Zhang W, Li Y, Qiu P, Lu D, He X (2016) Flavonoids of Rosa roxburghii Tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2 (Ca 2+)/Caspase-3/PARP-1 pathway. Apoptosis 21(10):1125–1143CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Hwang B-J, Shi G, Lu A-L (2014) Mammalian MutY homolog (MYH or MUTYH) protects cells from oxidative DNA damage. DNA Repair 13:10–21CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Radhakrishnan R, Li Y, Xiang S, Yuan F, Yuan Z, Telles E, Fang J, Coppola D, Shibata D, Lane WS (2015) Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2. J Biol Chem 290(37):22795–22804CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Moeglin E, Desplancq D, Conic S, Oulad-Abdelghani M, Stoessel A, Chiper M, Vigneron M, Didier P, Tora L, Weiss E (2019) Uniform widespread nuclear phosphorylation of histone H2AX is an indicator of lethal DNA replication stress. Cancer 11(3):355CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Fatima Jinnah Women UniversityRawalpindiPakistan
  2. 2.Armed Forces Institute of PathologyRawalpindiPakistan

Personalised recommendations