Application of Nanoparticles in Agriculture as Fertilizers and Pesticides: Challenges and Opportunities

  • Rehmanullah
  • Zahir Muhammad
  • Naila Inayat
  • Abdul Majeed


Sustainable management of ecosystem implies the exploitation of ecofriendly approaches in agriculture for production of crops. Since crop production is linearly determined by exhaustive application of fertilizers to increase soil fertility and pesticides to suppress yield limiting diseases, these processes at the same time result in ecosystem destabilization besides economic costs. Nanomaterials which are prepared by employing different techniques and which range in size between 1 and 100 nm, are comparatively safer and effective than conventional fertilizers. Their utilization as fertilizers and pesticides in agriculture for maximizing production of field crops is gaining popularity across the scientific community and further research in this area can enhance our knowledge about the emerging technology and its wide scale adoption. Different nanoparticles may exhibit potential divergent properties than traditional fertilizers and pesticides in terms of efficiency, costs, and environmental safety. In this chapter, nanoparticles and their possible utilization in agriculture for enhancing the production of crops are discussed with latest literature review.


Crop production Agricultural sustainability Environmental safety Nanotechnology Nanofertilizers 


  1. Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):0902CrossRefGoogle Scholar
  2. Abdel-Aziz H, Hasaneen MN, Omar A (2018) Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt J Bot 58(1):87–95Google Scholar
  3. Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6(2):199CrossRefPubMedPubMedCentralGoogle Scholar
  4. Adisa IO, Reddy Pullagurala VL, Rawat S, Hernandez-Viezcas JA, Dimkpa CO, Elmer WH et al (2018) Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). J Agric Food Chem 66(24):5959–5970CrossRefPubMedGoogle Scholar
  5. Alipour ZT (2016) The effect of phosphorus and sulfur nanofertilizers on the growth and nutrition of Ocimum basilicum in response to salt stress. J Chem Health Risks 6:125–131Google Scholar
  6. Almaraz M, Bai E, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ (2018) Agriculture is a major source of NOx pollution in California. Sci Adv 4(1):eaao3477CrossRefPubMedPubMedCentralGoogle Scholar
  7. Askary M, Amini F, Talebi SM, Gavari MS (2018) Effects of Fe-chelate and iron oxide nanoparticles on some of the physiological characteristics of alfalfa (Medicago sativa L.). environmental stresses in crop. Sciences 11(2):449–458Google Scholar
  8. Balaure PC, Gudovan D, Gudovan I (2017) Nanopesticides: a new paradigm in crop protection. In: New pesticides and soil sensors. Academic, London, pp 129–192CrossRefGoogle Scholar
  9. Benson T, Mogues T (2018) Constraints in the fertilizer supply chain: evidence for fertilizer policy development from three African countries. Food Sec 10(6):1479–1500CrossRefGoogle Scholar
  10. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, Cham, pp 33–93CrossRefGoogle Scholar
  11. Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Pérez CD, De La Torre-Roche R et al (2018) Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustain Chem Eng 6(11):14847–14856CrossRefGoogle Scholar
  12. Chen J, Mao S, Xu Z, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Adv 9(7):3788–3799CrossRefGoogle Scholar
  13. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22CrossRefGoogle Scholar
  14. Chun SC, Chandrasekaran M (2019) Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int J Biol Macromol 125:948–954CrossRefPubMedGoogle Scholar
  15. Cole MB, Augustin MA, Robertson MJ, Manners JM (2018) The science of food security. npj Sci Food 2(1):14CrossRefPubMedPubMedCentralGoogle Scholar
  16. Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119CrossRefGoogle Scholar
  17. Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64CrossRefGoogle Scholar
  18. De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 59–81CrossRefGoogle Scholar
  19. Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW et al (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5(127):105003–105037CrossRefGoogle Scholar
  20. Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66(26):6462–6473CrossRefPubMedGoogle Scholar
  21. Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Sustainable agriculture reviews. Springer, Cham, pp 307–330CrossRefGoogle Scholar
  22. Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079CrossRefGoogle Scholar
  23. Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C et al (2018) Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis 102(7):1394–1401CrossRefPubMedGoogle Scholar
  24. Elshahawy I, Abouelnasr HM, Lashin SM, Darwesh OM (2018) First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. J Plant Protect Res 58(2):137–151Google Scholar
  25. Farahat GA (2018) Biosynthesis of nano zinc and using of some nanoparticles in reducing of Cercospora leaf spot disease of sugar beet in the field. Environ Biodivers Soil Security 2:103–117CrossRefGoogle Scholar
  26. Farhat MG, Haggag WM, Thabet MS, Mosa AA (2018) Efficacy of silicon and titanium nanoparticles biosynthesis by some antagonistic fungi and bacteria for controlling powdery mildew disease of wheat plants. Technology 14(5):661–674Google Scholar
  27. Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83CrossRefGoogle Scholar
  29. Ha NMC, Nguyen TH, Wang SL, Nguyen AD (2019) Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res Chem Intermed 45(1):51–63CrossRefGoogle Scholar
  30. Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1(1):6–11CrossRefGoogle Scholar
  31. Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M et al (2018) Engineered nanomaterials suppress turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ Sci Nano 5(7):1685–1693CrossRefGoogle Scholar
  32. Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H et al (2019) Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ Res 170:1–6CrossRefPubMedGoogle Scholar
  33. Hasaneen MNAG, Abdel-aziz HMM, Omer AM (2016) Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem Biotechnol Res 4:68–76Google Scholar
  34. Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Academic, London, pp 193–225CrossRefGoogle Scholar
  35. Hornyak GL, Tibbals HF, Dutta J, Moore JJ (2008) Introduction to nanoscience and nanotechnology. CRC Press, Boca RatonCrossRefGoogle Scholar
  36. Huang J, Xu CC, Ridoutt BG, Wang XC, Ren PA (2017) Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J Clean Prod 159:171–179CrossRefGoogle Scholar
  37. Hussein MM, Abou-Baker NH (2018) The contribution of nano-zinc to alleviate salinity stress on cotton plants. R Soc Open Sci 5(8):171809CrossRefPubMedPubMedCentralGoogle Scholar
  38. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385PubMedPubMedCentralGoogle Scholar
  39. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867CrossRefGoogle Scholar
  41. Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13(8):677CrossRefPubMedGoogle Scholar
  42. Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):49–55Google Scholar
  43. Kanwar MK, Sun S, Chu X, Zhou J (2019) Impacts of metal and metal oxide nanoparticles on plant growth and productivity. In: Nanomaterials and plant potential. Springer, Cham, pp 379–392CrossRefGoogle Scholar
  44. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931CrossRefGoogle Scholar
  45. Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62(19):4227–4240CrossRefPubMedGoogle Scholar
  46. Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895CrossRefGoogle Scholar
  47. León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F, López-Valdez F (2018) Design and production of nanofertilizers. In: Agricultural nanobiotechnology. Springer, Cham, pp 17–31CrossRefGoogle Scholar
  48. Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42CrossRefGoogle Scholar
  49. Madbouly AK, Abdel-Aziz MS, Abdel-Wahhab MA (2017) Biosynthesis of nanosilver using chaetomium globosum and its application to control fusarium wilt of tomato in the greenhouse. IET Nanobiotechnol 11(6):702–708CrossRefGoogle Scholar
  50. Madou MJ (2011) Manufacturing techniques for microfabrication and nanotechnology, vol 2. CRC Press, Boca RatonCrossRefGoogle Scholar
  51. Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37(12):1599–1609CrossRefPubMedGoogle Scholar
  52. Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018) Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Appl Ecol Environ Res 16(2):1883–1897CrossRefGoogle Scholar
  53. Mishra P, Balaji APB, Tyagi BK, Mukherjee A, Chandrasekaran N (2018) Nanopesticides: a boon towards the control of dreadful vectors of lymphatic filariasis. In: Lymphatic filariasis. Springer, Singapore, pp 247–257CrossRefGoogle Scholar
  54. Nadendla SR, Rani TS, Vaikuntapu PR, Maddu RR, Podile AR (2018) HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr Polym 199:11–19CrossRefPubMedGoogle Scholar
  55. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229Google Scholar
  56. Oliver-Meseguer J, Boronat M, Vidal-Moya A, Concepción P, Rivero-Crespo MA, Leyva-Pérez A, Corma A (2018) Generation and reactivity of electron-rich carbenes on the surface of catalytic gold nanoparticles. J Am Chem Soc 140(9):3215–3218CrossRefPubMedGoogle Scholar
  57. Palchoudhury S, Jungjohann KL, Weerasena L, Arabshahi A, Gharge U, Albattah A et al (2018) Enhanced legume root growth with pre-soaking in α-Fe 2 O 3 nanoparticle fertilizer. RSC Adv 8(43):24075–24083CrossRefGoogle Scholar
  58. Pan B, Lam SK, Mosier A, Luo Y, Chen D (2016) Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ 232:283–289CrossRefGoogle Scholar
  59. Pandey S, Giri K, Kumar R, Mishra G, Rishi RR (2018) Nanopesticides: opportunities in crop protection and associated environmental risks. Proc Natl Acad Sci India Sect B Biol Sci 88(4):1287–1308CrossRefGoogle Scholar
  60. Panwar J (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing nano-fertilizers. In: International conference on environmental research and technology (ICERT)Google Scholar
  61. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014CrossRefPubMedPubMedCentralGoogle Scholar
  62. Qin D, Riggs BA (2013) Nanotechnology: a top–down approach. In: Encyclopedia of supramolecular chemistry-two-volume set (Print). CRC Press, Boca Raton, pp 1–9Google Scholar
  63. Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503CrossRefPubMedGoogle Scholar
  64. Reches Y, Thomson K, Helbing M, Kosson DS, Sanchez F (2018) Agglomeration and reactivity of nanoparticles of SiO2, TiO2, Al2O3, Fe2O3, and clays in cement pastes and effects on compressive strength at ambient and elevated temperatures. Constr Build Mater 167:860–873CrossRefGoogle Scholar
  65. Rezaei-Chiyaneh E, Rahimi S, Rahimi A, Hadi H, Mahdavikia H (2018) Response of seed yield and essential oil of black cumin (Nigella sativa L.) affected as foliar spraying of nano-fertilizers. J Med Plants By-Prod 7(1):33–40Google Scholar
  66. Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166CrossRefPubMedGoogle Scholar
  67. Roy A, Bhattacharya J (2015) Nanotechnology in industrial wastewater treatment. IWA Publishing, LondonGoogle Scholar
  68. Sathiyabama M, Manikandan A (2018) Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. J Agric Food Chem 66(8):1784–1790CrossRefPubMedGoogle Scholar
  69. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2(1):2Google Scholar
  70. Saxena A, Jain A, Upadhyay P, Gauba PG (2018) Applications of nanotechnology in agriculture. J Nanosci Nanoeng Appl 8(1):20–27Google Scholar
  71. Shuqin J, Fang Z (2018) Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J Resour Ecol 9(1):50–59CrossRefGoogle Scholar
  72. Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK et al (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8(1):2485CrossRefPubMedPubMedCentralGoogle Scholar
  73. Singh MD, Gautam C, Patidar OP, Meena HM (2017) Nano fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agric Sci 9(7):3831–3833Google Scholar
  74. Soejima T, Nishizawa K, Isoda R (2018) Monodisperse manganese oxide nanoparticles: synthesis, characterization, and chemical reactivity. J Colloid Interface Sci 510:272–279CrossRefPubMedGoogle Scholar
  75. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101Google Scholar
  76. Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47CrossRefGoogle Scholar
  77. Spruogis V, Jakienė E, Dautartė A, Zemeckis R (2018) The influence of bioorganic nanofertilizer on spring barley and oilseed rape productivity and economical effectiveness. Žemės ūkio mokslai 25(1):18–26CrossRefGoogle Scholar
  78. Subbenaik SC (2016) Physical and chemical nature of nanoparticles. In: Plant nanotechnology. Springer, Cham, pp 15–27CrossRefGoogle Scholar
  79. Taheri M, Qarache HA, Qarache AA, Yoosefi M (2016) The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J 1(2):17–20CrossRefGoogle Scholar
  80. Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262CrossRefGoogle Scholar
  81. Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12(1):60CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671CrossRefPubMedGoogle Scholar
  83. Varamin KJ, Fanoodi F, Sinaki JM, Rezvan S, Damavandi A (2018) Physiological response of sesame (Sesamum indicum L.) to application of chitosan and magnesium-nano fertilizers under irrigation cut-off in a sustainable agriculture system. Plant Physiol 9(1):2629–2639Google Scholar
  84. Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N et al (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127CrossRefPubMedGoogle Scholar
  85. Wang SL, Nguyen AD (2018) Effects of Zn/B nanofertilizer on biophysical characteristics and growth of coffee seedlings in a greenhouse. Res Chem Intermed 44(8):4889–4901CrossRefGoogle Scholar
  86. Xu L, Liang HW, Yang Y, Yu SH (2018) Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem Rev 118(7):3209–3250CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rehmanullah
    • 1
  • Zahir Muhammad
    • 1
  • Naila Inayat
    • 1
  • Abdul Majeed
    • 2
  1. 1.Department of BotanyUniversity of PeshawarPeshawarPakistan
  2. 2.Department of BotanyGovernment Degree College Naguman PeshawarPeshawarPakistan

Personalised recommendations