Application of Plant Volatile Organic Compounds (VOCs) in Agriculture

  • Abhinav K. MauryaEmail author


Plant volatiles facilitates communication between plants and organisms of other trophic levels, i.e., herbivores and their natural enemies. There is also mounting evidence that plant VOCs provide direct defense against various abiotic and biotic stresses. The ability of plant volatile compounds to act as reliable attraction and deterrence cue for herbivores and pathogens and attraction cue for beneficial insects presents new prospects for its commercial use as baits in sustainable agriculture. Considerable progress has been made in utilizing the VOC-mediated signaling in pest control, plant defense priming, and growth stimulation. At present, the use of genetically modified (GM) crops with altered VOC emission and synthetic plant VOCs in field setting has shown promising results. In this chapter, we review the different areas in which the possible benefits of plant VOCs can be utilized. We also discuss the potential use of GM crops and commercial VOC formulations in agriculture for their defensive role against abiotic and biotic stresses.


Agriculture Abiotic and biotic stresses Crop protection Defense priming Insect pests Indirect defense Plant volatiles Plant defenses Sustainable agriculture Volatile organic compounds (VOCs) 


  1. Abanda-Nkpwatt D, Krimm U, Coiner HA, Schreiber L, Schwab W (2006) Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environ Exp Bot 56(1):108–119CrossRefGoogle Scholar
  2. Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99(1):26–35CrossRefGoogle Scholar
  3. Aljbory Z, Chen M-S (2018) Indirect plant defense against insect herbivores: a review. Insect Sci 25(1):2–23CrossRefGoogle Scholar
  4. Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329(5995):1075–1078CrossRefGoogle Scholar
  5. Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS (2013) Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. elife 2:e00421CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arimura G-I, Ozawa R, Horiuchi J-I, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29(10):1049–1061CrossRefGoogle Scholar
  7. Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221(4607):277–279CrossRefGoogle Scholar
  8. Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31(2):247–265CrossRefGoogle Scholar
  9. Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16(5):561–569CrossRefGoogle Scholar
  10. Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA et al (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci U S A 103(27):10509–10513CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87(2):133–142CrossRefGoogle Scholar
  12. Bhowmik PC (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22(4):661–671Google Scholar
  13. Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151(2):925–935CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bradow JM (1991) Relationships between chemical structure and inhibitory activity of C6 through C9 volatiles emitted by plant residues. J Chem Ecol 17(11):2193–2212CrossRefGoogle Scholar
  15. Bradow JM, Connick WJ (1990) Volatile seed germination inhibitors from plant residues. J Chem Ecol 16(3):645–666CrossRefGoogle Scholar
  16. Bruce TJ, Martin JL, Pickett JA, Pye BJ, Smart LE, Wadhams LJ (2003) cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Manag Sci 59(9):1031–1036CrossRefGoogle Scholar
  17. Bukovinszky T, Gols R, Posthumus MA, Vet LEM, Van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellén). J Chem Ecol 31(3):461–480CrossRefGoogle Scholar
  18. Caparrotta S, Boni S, Taiti C, Palm E, Mancuso S, Pandolfi C (2018) Induction of priming by salt stress in neighboring plants. Environ Exp Bot 147:261–270CrossRefGoogle Scholar
  19. Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B (2015) Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas Plant Pathol 44(2):245–254CrossRefGoogle Scholar
  20. Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS one 3(4):e1904CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cofer TM, Engelberth M, Engelberth J (2018) Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. Plant Cell Environ 41(7):1673–1682CrossRefGoogle Scholar
  22. Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CM, Poinssot B, Pozo MJ (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19(10):1062–1071CrossRefGoogle Scholar
  23. Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169(7):664–672CrossRefGoogle Scholar
  24. Copolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139(1):485–496CrossRefPubMedPubMedCentralGoogle Scholar
  25. Croft KP, Juttner F, Slusarenko AJ (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101(1):13–24CrossRefPubMedPubMedCentralGoogle Scholar
  26. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577CrossRefGoogle Scholar
  27. Degenhardt J, Hiltpold I, Kollner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci U S A 106(41):17606Google Scholar
  28. Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33(5):997–1012CrossRefGoogle Scholar
  29. Dhankher OP, Foyer CH (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41(5):877–884CrossRefGoogle Scholar
  30. Dicke M (1988) Prey preference of the phytoseiid mite Typhlodromus pyri response to volatile kairomones. Exp Appl Acarol 4(1):1–13CrossRefGoogle Scholar
  31. Dicke M, Dijkman H (1992) Induced defence in detached uninfested plant leaves: effects on behaviour of herbivores and their predators. Oecologia 91(4):554–560CrossRefGoogle Scholar
  32. Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Netherlands J Zool 38(2–4):148–165Google Scholar
  33. Ebel RC, Mattheis JP, Buchanan DA (1995) Drought stress of apple trees alters leaf emissions of volatile compounds. Physiol Plant 93(4):709–712CrossRefGoogle Scholar
  34. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101(6):1781–1785CrossRefPubMedPubMedCentralGoogle Scholar
  35. Engelberth J, Engelberth M (2019) The costs of green leaf volatile-induced defense priming: temporal diversity in growth responses to mechanical wounding and insect herbivory. Plants 8(1):23CrossRefPubMedPubMedCentralGoogle Scholar
  36. Engelberth J, Seidl-Adams I, Schultz JC, Tumlinson JH (2007) Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in zea mays. Mol Plant Microbe Interact 20(6):707–716CrossRefGoogle Scholar
  37. Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6(6273):6273CrossRefPubMedPubMedCentralGoogle Scholar
  38. Farmer EE (2014) Leaf defence. OUP, OxfordCrossRefGoogle Scholar
  39. Fischer NH, Williamson GB, Weidenhamer JD, Richardson DR (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20(6):1355–1380CrossRefGoogle Scholar
  40. Freundlich GE, Frost C (2018) Variable costs of eavesdropping a green leaf volatile on two plant species in a common garden experiment. bioRxivGoogle Scholar
  41. Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10(6):490–498CrossRefGoogle Scholar
  42. Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008a) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146(3):818–824CrossRefPubMedPubMedCentralGoogle Scholar
  43. Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008b) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180(3):722–734CrossRefGoogle Scholar
  44. Gasmi L, Martínez-Solís M, Frattini A, Ye M, Collado MC, Turlings TCJ, Erb M, Herrero S (2019) Can herbivore-induced volatiles protect plants by increasing the herbivores’ susceptibility to natural pathogens? J Appl Environ Microbiol 85(1):e01468-18CrossRefGoogle Scholar
  45. Gfeller A, Laloux M, Barsics F, Kati DE, Haubruge E, du Jardin P, Verheggen FJ, Lognay G, Wathelet J-P, Fauconnier M-L (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39(8):1129–1139CrossRefGoogle Scholar
  46. Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608CrossRefGoogle Scholar
  47. Gols R, Bullock JM, Dicke M, Bukovinszky T, Harvey JA (2011) Smelling the wood from the trees: non-linear parasitoid responses to volatile attractants produced by wild and cultivated cabbage. J Chem Ecol 37(8):795CrossRefPubMedPubMedCentralGoogle Scholar
  48. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay W (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100(D5):8873–8892CrossRefGoogle Scholar
  49. Haas UJ, Grimm C, James JR 2013. Patent no. WO 2013/037758 A1-crop enhancement with cis-jasmone. Organization WIP
  50. Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals—‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11(1):24–34PubMedGoogle Scholar
  51. Hamilton-Kemp T, McCracken C, Loughrin J, Andersen R, Hildebrand D (1992) Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J Chem Ecol 18(7):1083–1091CrossRefGoogle Scholar
  52. Hatano E, Saveer AM, Borrero-Echeverry F, Strauch M, Zakir A, Bengtsson M, Ignell R, Anderson P, Becher PG, Witzgall P (2015) A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biol 13(1):75CrossRefPubMedPubMedCentralGoogle Scholar
  53. Heil M (2004) Direct defense or ecological costs: responses of herbivorous beetles to volatiles released by wild lima bean (Phaseolus lunatus). J Chem Ecol 30(6):1289–1295CrossRefGoogle Scholar
  54. Heil M, Bueno JCS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A 104(13):5467–5472CrossRefPubMedPubMedCentralGoogle Scholar
  55. Himejima M, Hobson KR, Otsuka T, Wood DL, Kubo I (1992) Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defense mechanism against microbial invasion. J Chem Ecol 18(10):1809–1818CrossRefGoogle Scholar
  56. Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9(11):529–533CrossRefGoogle Scholar
  57. Huang J, Cardoza YJ, Schmelz EA, Raina R, Engelberth J, Tumlinson JH (2003) Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217(5):767–775CrossRefGoogle Scholar
  58. Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193(4):997–1008CrossRefGoogle Scholar
  59. James DG (2003) Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J Chem Ecol 29(7):1601–1609CrossRefGoogle Scholar
  60. James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31(3):481–495CrossRefGoogle Scholar
  61. James DG, Grasswitz TR (2005) Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. BioControl 50(6):871–880CrossRefGoogle Scholar
  62. James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30(8):1613–1628CrossRefGoogle Scholar
  63. Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 36(12):1398–1407CrossRefGoogle Scholar
  64. Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control 60(2):77–89CrossRefGoogle Scholar
  65. Karban R, Maron J (2002) The fitness consequences of interspecific eavesdropping between plants. Ecology 83(5):1209–1213CrossRefGoogle Scholar
  66. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144CrossRefGoogle Scholar
  67. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006) Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci 170(4):715–723CrossRefGoogle Scholar
  68. Kong C, Hu F, Xu X (2002) Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. J Chem Ecol 28(6):1173–1182CrossRefGoogle Scholar
  69. lee K, Seo PJ (2014) Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighboring plants. Plant Signal Behav 9(3):e28392CrossRefPubMedPubMedCentralGoogle Scholar
  70. Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123(4):1605–1610CrossRefPubMedPubMedCentralGoogle Scholar
  71. Loreto F, Förster A, Dürr M, Csiky O, Seufert G (1998) On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 21(1):101–107CrossRefGoogle Scholar
  72. Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126(3):993–1000CrossRefPubMedPubMedCentralGoogle Scholar
  73. Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24(4):361–367CrossRefGoogle Scholar
  74. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127(4):1781–1787CrossRefPubMedPubMedCentralGoogle Scholar
  75. Major RT, Marchini P, Sproston T (1960) Isolation from Ginkgo biloba L. of an inhibitor of fungus growth. J Biol Chem 235(11):3298–3299PubMedGoogle Scholar
  76. Mäntylä E, Alessio GA, Blande JD, Heijari J, Holopainen JK, Laaksonen T, Piirtola P, Klemola T (2008) From plants to birds: higher avian predation rates in trees responding to insect herbivory. PLoS One 3(7):e2832CrossRefPubMedPubMedCentralGoogle Scholar
  77. Martino LD, Mancini E, LFRd A, Feo VD (2010) The antigerminative activity of twenty-seven monoterpenes. Molecules 15(9):6630CrossRefPubMedPubMedCentralGoogle Scholar
  78. Matsui K, Kishimoto K, Takabayashi J, Ozawa R (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46(7):1093–1102CrossRefGoogle Scholar
  79. Matsui K, Minami A, Hornung E, Shibata H, Kishimoto K, Ahnert V, Kindl H, Kajiwara T, Feussner I (2006) Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Phytochemistry 67(7):649–657CrossRefGoogle Scholar
  80. Maurya AK, Pazouki L, Frost C (2019) Plant seeds are primed by herbivore-induced plant volatiles. bioRxiv: 522839Google Scholar
  81. Monson RK, Fall R (1989) Isoprene emission from aspen leaves: influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90(1):267–274CrossRefPubMedPubMedCentralGoogle Scholar
  82. Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98(3):1175–1180CrossRefPubMedPubMedCentralGoogle Scholar
  83. Muller WH, Muller CH (1964) Volatile growth inhibitors produced by salvia species. Bull Torrey Bot Club 91(4):327–330CrossRefGoogle Scholar
  84. Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88(7):628–667CrossRefGoogle Scholar
  85. Nakamura S, Hatanaka A (2002) Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both gram-negative and gram-positive bacteria. J Agric Food Chem 50(26):7639–7644CrossRefGoogle Scholar
  86. Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54(389):1931–1939CrossRefGoogle Scholar
  87. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537–537PubMedPubMedCentralGoogle Scholar
  88. Pardo-Muras M, Puig CG, López-Nogueira A, Cavaleiro C, Pedrol N (2018) On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: profiles of volatile organic compounds and their phytotoxic effects. PLoS One 13(10):e0205997CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pinto-Zevallos DM, Strapasson P, Zarbin PH (2016) Herbivore-induced volatile organic compounds emitted by maize: electrophysiological responses in Spodoptera frugiperda females. Phytochem Lett 16:70–74CrossRefGoogle Scholar
  90. Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerré-Tugayé M-T, Rosahl S et al (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139(4):1902–1913CrossRefPubMedPubMedCentralGoogle Scholar
  91. Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Ádame-Alvarez RM, Acosta-Gallegos JA, Heil M (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103(1):250–260CrossRefGoogle Scholar
  92. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569CrossRefGoogle Scholar
  93. Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737CrossRefGoogle Scholar
  94. Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. ACS Publications, Washington, DCGoogle Scholar
  95. Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ (2009) Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol 35(2):163–175CrossRefGoogle Scholar
  96. Ryan AC, Hewitt CN, Possell M, Vickers CE, Purnell A, Mullineaux PM, Davies WJ, Dodd IC (2014) Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants. New Phytol 201(1):205–216CrossRefGoogle Scholar
  97. Sasaki K, Ohara K, Yazaki K, Saito T, Oksman-Caldentey K-M, Lämsä M, Ohyama K, Suzuki M, Muranaka T (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48(9):1254–1262CrossRefGoogle Scholar
  98. Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC (2013) E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front Plant Sci 4:74CrossRefPubMedPubMedCentralGoogle Scholar
  99. Schenkel D, Lemfack M, Piechulla B, Splivallo R (2015) A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front Plant Sci 6:707CrossRefPubMedPubMedCentralGoogle Scholar
  100. Schuman MC, Barthel K, Baldwin IT (2012) Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. elife 1:e00007CrossRefPubMedPubMedCentralGoogle Scholar
  101. Sharifi R, Lee S-M, Ryu C-M (2018) Microbe-induced plant volatiles. New Phytol 220(3):684–691CrossRefGoogle Scholar
  102. Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125(4):2001–2006CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95(3):328–333CrossRefGoogle Scholar
  104. Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374(6525):769–769CrossRefGoogle Scholar
  105. Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Nat Acad Sci U S A 103(45):16672–16676CrossRefGoogle Scholar
  106. Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385(6618):718–721CrossRefGoogle Scholar
  107. Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Uiterkamp AJS, Mark AE (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochim Biophys Acta 1768(2):198–206CrossRefGoogle Scholar
  108. Song G, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803CrossRefPubMedPubMedCentralGoogle Scholar
  109. Tesio F, Ferrero A (2010) Allelopathy, a chance for sustainable weed management. Int J Sustain Dev World Ecol 17(5):377–389Google Scholar
  110. Teuber M, Zimmer I, Kreuzwieser J, Ache P, Polle A, Rennenberg H, Schnitzler JP (2008) VOC emissions of Grey poplar leaves as affected by salt stress and different N sources. Plant Biol 10(1):86–96CrossRefGoogle Scholar
  111. Thaler JS (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399(6737):686–688CrossRefGoogle Scholar
  112. Thelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol Lett 8(2):209–217CrossRefGoogle Scholar
  113. Tingey DT, Manning M, Grothaus LC, Burns WF (1980) Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 65(5):797–801CrossRefPubMedPubMedCentralGoogle Scholar
  114. Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y (2012) The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J 71(5):763–775CrossRefGoogle Scholar
  115. Turlings TC, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci 89(17):8399–8402CrossRefGoogle Scholar
  116. Turlings TC, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250(4985):1251–1253CrossRefGoogle Scholar
  117. Vallat A, Gu H, Dorn S (2005) How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 66(13):1540–1550CrossRefGoogle Scholar
  118. Van Tol RW, Van Der Sommen AT, Boff MI, Van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4(4):292–294CrossRefGoogle Scholar
  119. Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castañera P, Sánchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci 98(14):8139–8144CrossRefGoogle Scholar
  120. Veyrat N, Robert CAM, Turlings TCJ, Erb M (2016) Herbivore intoxication as a potential primary function of an inducible volatile plant signal. J Ecol 104(2):591–600CrossRefGoogle Scholar
  121. Vokou D, Douvli P, Blionis GJ, Halley JM (2003) Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J Chem Ecol 29(10):2281–2301CrossRefGoogle Scholar
  122. Vuorinen T, Nerg A-M, Holopainen JK (2004) Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut 131(2):305–311CrossRefGoogle Scholar
  123. Wheatley R (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81(1–4):357–364CrossRefGoogle Scholar
  124. Yan Z-G, Wang C-Z (2006) Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 67(1):34–42CrossRefGoogle Scholar
  125. Yu H, Zhang Y, Wu K, Gao XW, Guo YY (2008) Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ Entomol 37(6):1410–1415CrossRefGoogle Scholar
  126. Zeringue HJ, McCormick SP (1989) Relationships between cotton leaf-derived volatiles and growth ofAspergillus flavus. J Am Oil Chem Soc 66(4):581–585CrossRefGoogle Scholar
  127. Zhang Y, Xie Y, Xue J, Peng G, Wang X (2009) Effect of volatile emissions, especially alpha-pinene, from persimmon trees infested by Japanese wax scales or treated with methyl jasmonate on recruitment of ladybeetle predators. Environ Entomol 38(5):1439–1445CrossRefGoogle Scholar
  128. Zhuge PP, Luo SL, Wang MQ, Zhang G (2010) Electrophysiological responses of Batocera horsfieldi (Hope) adults to plant volatiles. J Appl Entomol 134(7):600–607Google Scholar
  129. Gomi K, Yamasaki Y, Yamamoto H, Akimitsu K (2003) Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in citrus. J Plant Physiol 160(10):1219–1231CrossRefGoogle Scholar
  130. He P-Q, Tian L, Chen K-S, Hao L-H, Li G-Y (2006) Induction of volatile organic compounds of Lycopersicon esculentum mill. and its resistance to Botrytis cinerea pers. by burdock oligosaccharide. J Integr Plant Biol 48(5):550–557CrossRefGoogle Scholar
  131. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry 69(11):2127–2132CrossRefGoogle Scholar
  132. Kubo I, Fujita K (2001) Naturally occurring anti-salmonella agents. J Agric Food Chem 49(12):5750–5754CrossRefGoogle Scholar
  133. Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN (2008) Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ 31(10):1410–1415CrossRefGoogle Scholar
  134. Myung K, Hamilton-Kemp TR, Archbold DD (2007) Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes. J Agric Food Chem 55(6):2182–2188CrossRefGoogle Scholar
  135. Pettersson J, Pickett J, Pye B, Quiroz A, Smart L, Wadhams L, Woodcock C (1994) Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.)(Homoptera, Aphididae), and other aphids in cereal fields. J Chem Ecol 20(10):2565–2574CrossRefGoogle Scholar
  136. Yi H-S, Heil M, Adame-Álvarez RM, Ballhorn DJ, Ryu C-M (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151(4):2152–2161CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiologyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations