CRISPR/Cas9-Edited Rice: A New Frontier for Sustainable Agriculture

  • Sahil Mehta
  • Shambhu Krishan Lal
  • Kuleshwar Prasad Sahu
  • Ajay Kumar Venkatapuram
  • Mukesh Kumar
  • Vijay Sheri
  • Panditi Varakumar
  • Chandrapal Vishwakarma
  • Renu Yadav
  • M. Rizwan Jameel
  • Miraj Ali
  • V. Mohan M. Achary
  • Malireddy K. Reddy


With the exponential increase in the world’s human population, improving agricultural productivity is among the top of the researchers’ agendas till the 2050 deadline. One of the potential solutions to this global issue is genome editing because of the precision, fastness, and probably low cost involved compared to other traditional methods. It is in the spotlight especially from the last decade due to the discovery of sequence-specific-based nuclease technology including CRISPR/Cas9 tool. Initially, this tool was applied only in protoplasts and calli. However, due to the modifications in vectors, Cas9 variants, cassettes, cloning systems, multiplexing, and delivery methods, this platform has revolutionized the plant science field. It has been exploited in such a manner that about 16 crop plants have been already edited in the last few years. Out of all crops, most of the editing has been done in the case of rice (Oryza sativa L., Family: Poaceae), a cereal staple food. Therefore, in the current chapter, we have highlighted about the CRISPR/Cas9-edited rice for agronomic traits, stress tolerance/resistance, and biofortification. Additionally, we have presented an overview of various tools, databases, and commercial service providers devoted solely to CRISPR/Cas9 genome-editing technology.


Plants Agriculture Yield CRISPR/Cas Online resources Future crops 


  1. Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52(5):2522–2529CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abbott TR, Qi LS (2018) Evolution at the cutting edge: CRISPR-mediated directed evolution. Mol Cell 72(3):402–403CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alagoz Y, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alok A, Kumar J, Jogam P, Sandhya D (2018) CRISPR/Cas9-mediated gene editing tool and fathomless genetic and metabolic engineering applications in plants. In: Recent trends and techniques in plant metabolic engineering. Springer, Singapore, pp 167–179CrossRefGoogle Scholar
  5. Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35(3):146–189CrossRefGoogle Scholar
  6. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Sci 6:886CrossRefPubMedPubMedCentralGoogle Scholar
  7. Atkins P, Bowler I (2016) Food in society: economy, culture, geography. Routledge, AbingdonCrossRefGoogle Scholar
  8. Anamika MS, Singh B, Patra A, Islam MA (2019) Databases: a weapon from the arsenal of bioinformatics for plant abiotic stress research. In: Recent approaches in omics for plant resilience to climate change. Springer, Cham, pp 135–169CrossRefGoogle Scholar
  9. Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34(6):1073–1090CrossRefPubMedPubMedCentralGoogle Scholar
  10. Azzam O, Chancellor TC (2002) The biology, epidemiology, and management of rice tungro disease in Asia. Plant Dis 86(2):88–100CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJ, Till BJ, Laimer M (2015) Plant mutation breeding: current progress and future assessment. Plant Breed Rev 39:23–88Google Scholar
  12. Bado S, Yamba NG, Sesay JV, Laimer M, Forster BP (2017) Plant mutation breeding for the improvement of vegetatively propagated crops: successes and challenges. CAB Reviews 12(028):1–21CrossRefGoogle Scholar
  13. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131CrossRefPubMedPubMedCentralGoogle Scholar
  15. Baltes NJ, Gil-Humanes J, Voytas DF (2017) Genome engineering and agriculture: opportunities and challenges. In: Progress in molecular biology and translational science, vol 149. Academic Press, Cambridge, pp 1–26Google Scholar
  16. Banasik A, Kanellopoulos A, Claassen GD, Bloemhof-Ruwaard JM, van der Vorst JG (2017) Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization. Ann Oper Res 250(2):341–362CrossRefGoogle Scholar
  17. Banerjee A, Roychoudhury A (2019) Genetic engineering in plants for enhancing arsenic tolerance. In: Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, Cambridge, pp 463–475CrossRefGoogle Scholar
  18. Baret PV, Vanloqueren G (2017) How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. In: Food sovereignty, agroecology and biocultural diversity. Routledge, Abingdon, pp 77–112Google Scholar
  19. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39CrossRefPubMedPubMedCentralGoogle Scholar
  20. Belkhodja R (2018) Breeding small grain cereal crops in a climate change scenario.
  21. Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8Google Scholar
  22. Bilichak A, Eudes F (2016) Genetic engineering of plants using Zn fingers, TALENs, and CRISPRs. In: Genome stability. Academic Press, Cambridge, pp 187–201CrossRefGoogle Scholar
  23. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493(7432):429CrossRefPubMedPubMedCentralGoogle Scholar
  24. Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M (2018) Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol 18(1):174CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L, Cheng Z, Chen G (2017) A transcription activator-like effector Tal7 of Xanthomonasoryzaepv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7(1):5089CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cazzolla Gatti R (2016) Trends in human development and environmental protection. Int J Environ Stud 73(2):268–276CrossRefGoogle Scholar
  27. Certo MT, Gwiazda KS, Kuhar R, Sather B, Curinga G, Mandt T, Brault M, Lambert AR, Baxter SK, Jacoby K, Ryu BY (2012) Coupling endonucleases with DNA end–processing enzymes to drive gene disruption. Nat Methods 9(10):973CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chancellor TCB, Holt J, Villareal S, Tiongco ER, Venn J (2006) Spread of plant virus disease to new plantings: a case study of rice tungro disease. Adv Virus Res 66:1–29CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chao S, Cai Y, Feng B, Jiao G, Sheng Z, Luo J, Tang S, Wang J, Wei X, Hu P (2019) Editing of the rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Sci 26(2):77–87CrossRefGoogle Scholar
  30. Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR/Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12(9):823CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697CrossRefPubMedPubMedCentralGoogle Scholar
  33. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefPubMedPubMedCentralGoogle Scholar
  35. Copetti D, Zhang J, El Baidouri M, Gao D, Wang J, Barghini E, Cossu RM, Angelova A, Roffler S, Ohyanagi H, Wicker T (2015) RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics 16(1):538CrossRefPubMedPubMedCentralGoogle Scholar
  36. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975CrossRefPubMedPubMedCentralGoogle Scholar
  37. Daboussi F, Stoddard TJ, Zhang F (2015) Engineering meganuclease for precise plant genome modification. In: Advances in new technology for targeted modification of plant genomes. Springer, New York, pp 21–38Google Scholar
  38. Darwin C (2010) The variation of animals and plants under domestication. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Dhakate P, Sharma P, Mehta S, Akter J, Bhatt V, Chandanshive S, Chakravarty D, Rahman M, Islam MA (2019) Beneficial role of metalloids in plants: molecular understanding and applicability. In: Recent approaches in omics for plant resilience to climate change. Springer, Cham, pp 357–387CrossRefGoogle Scholar
  40. Dillard HR (2019) Global food and nutrition security: from challenges to solutions. Food Sec 11:249–252CrossRefGoogle Scholar
  41. Ding D, Chen K, Chen Y, Li H, Xie K (2018) Engineering introns to express RNA guides for Cas9-and Cpf1-mediated multiplex genome editing. Mol Plant 11(4):542–552CrossRefPubMedPubMedCentralGoogle Scholar
  42. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR/Cas9–mediated gene inactivation. Nat Biotechnol 32(12):1262CrossRefPubMedPubMedCentralGoogle Scholar
  43. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990CrossRefPubMedPubMedCentralGoogle Scholar
  44. Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169CrossRefPubMedPubMedCentralGoogle Scholar
  45. Eş I, Gavahian M, Marti-Quijal FJ, Lorenzo JM, Khaneghah AM, Tsatsanis C, Kampranis SC, Barba FJ (2019) The application of the CRISPR/Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges. Biotechnol Adv 37(3):410–421CrossRefPubMedPubMedCentralGoogle Scholar
  46. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229CrossRefPubMedPubMedCentralGoogle Scholar
  47. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014a) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in arabidopsis. Proc Natl Acad Sci 111(12):4632–4637CrossRefPubMedPubMedCentralGoogle Scholar
  48. Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014b) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in arabidopsis. Proc Natl Acad Sci U S A 111(12):4632–4637CrossRefPubMedPubMedCentralGoogle Scholar
  49. Figueroa A (2019) Population and the quality of society. In: The quality of society. Palgrave Macmillan, Cham, pp 115–137CrossRefGoogle Scholar
  50. Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TT, Koizumi S, Sugimoto K (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:4550CrossRefGoogle Scholar
  51. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19(5):275–276CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in nicotianatabacum. Plant Mol Biol 87(1–2):99–110CrossRefPubMedPubMedCentralGoogle Scholar
  54. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100CrossRefPubMedPubMedCentralGoogle Scholar
  55. Glenn KC, Alsop B, Bell E, Goley M, Jenkinson J, Liu B, Martin C, Parrott W, Souder C, Sparks O, Urquhart W (2017) Bringing new plant varieties to market: plant breeding and selection practices advance beneficial characteristics while minimizing unintended changes. Crop Sci 57(6):2906–2921CrossRefGoogle Scholar
  56. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148CrossRefPubMedPubMedCentralGoogle Scholar
  57. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hensel G, Kumlehn J (2019) Genome engineering using TALENs. In: Barley. Humana Press, New York, NY, pp 195–215CrossRefGoogle Scholar
  59. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR/Cas9 for genome engineering. Cell 157(6):1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hu X, Wang C, Fu Y, Liu Q, Jiao X, Wang K (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 9(6):943–945CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hu X, Wang C, Liu Q, Fu Y, Wang K (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44(1):71–73CrossRefPubMedPubMedCentralGoogle Scholar
  64. Huang TK, Puchta H (2019) CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Rep 38(4):443–453CrossRefPubMedPubMedCentralGoogle Scholar
  65. Huang X, Zeng X, Li J, Zhao D (2017) Construction and analysis of tify1a and tify1b mutants in rice (Oryza sativa) based on CRISPR/Cas9 technology. J Agric Biotechnol 25(6):1003–1012Google Scholar
  66. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188CrossRefPubMedPubMedCentralGoogle Scholar
  67. Jun R, Xixun H, Kejian W, Chun W (2019) Development and application of CRISPR/Cas system in rice. Ric Sci 26(2):69–76CrossRefGoogle Scholar
  68. Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP, Emani C, Abdurakhmonov IY (2017) Genome editing in plants: an overview of tools and applications. Int J Agron 2017:1–15CrossRefGoogle Scholar
  69. Kantar MB, Runck BC, Raghavan B, Joglekar AB, Senay S, Krohn B, Neyhart J, Bradeen J, Soto Gomez M, Kjelgren R (2019) The many-faced Janus of plant breeding. Plants People Planet 1(4):306–309.
  70. Kaur K, Tandon H, Gupta AK, Kumar M (2015) CrisprGE: a central hub of CRISPR/Cas-based genome editing. Database 2015:bav055CrossRefPubMedPubMedCentralGoogle Scholar
  71. Khalid A, Zhang Q, Yasir M, Li F (2017) Small RNA based genetic engineering for plant viral resistance: application in crop protection. Front Microbiol 8:43CrossRefPubMedPubMedCentralGoogle Scholar
  72. Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59(1):1–6CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kihoro J, Bosco NJ, Murage H, Ateka E, Makihara D (2013) Investigating the impact of rice blast disease on the livelihood of the local farmers in greater Mwea region of Kenya. Springerplus 2(1):308CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kim HJ, Cho SW, Jeong JS, Kim JK, Lim YP, Kim JS, Kang BC (2012) Construction, selection, and application of zinc finger nucleases as a tool for genome editing in rice. 한국원예학회학술발표요지. Seoul National University Open Repository. pp 45–46.
  75. Kleter GA, Kuiper HA, Kok EJ (2019) Gene-edited crops: towards a harmonized safety assessment. Trends Biotechnol 37(5):443–447CrossRefPubMedPubMedCentralGoogle Scholar
  76. Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361(6405):866–869CrossRefPubMedPubMedCentralGoogle Scholar
  77. Korotkova AM, Gerasimova SV, Shumny VK, Khlestkina EK (2017) Crop genes modified using the CRISPR/Cas system. Russian J Genet Appl Res 7(8):822–832CrossRefGoogle Scholar
  78. Korotkova AM, Gerasimova SV, Khlestkina EK (2019) Current achievements in modifying crop genes using CRISPR/Cas system. Vavilov J Genet Breed 23(1)Google Scholar
  79. Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S (2018) Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere 211:397–406CrossRefPubMedPubMedCentralGoogle Scholar
  80. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276CrossRefPubMedPubMedCentralGoogle Scholar
  81. Laible G, Wei J, Wagner S (2015) Improving livestock for agriculture–technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol J 10(1):109–120CrossRefPubMedPubMedCentralGoogle Scholar
  82. Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lassoued R, Macall DM, Hesseln H, Phillips PW, Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgenic Res 28(2):247–256CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lee JH, Muhsin M, Atienza GA, Kwak DY, Kim SM, De Leon TB, Angeles ER, Coloquio E, Kondoh H, Satoh K, Cabunagan RC (2010) Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Mol Plant Microbe Interact 23(1):29–38CrossRefPubMedPubMedCentralGoogle Scholar
  85. Li C, Zhang B (2019) Genome editing in cotton using CRISPR/Cas9 system. In: Transgenic cotton. Humana Press, New York, pp 95–104CrossRefGoogle Scholar
  86. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390CrossRefGoogle Scholar
  87. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016a) Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2(10):16139CrossRefPubMedPubMedCentralGoogle Scholar
  88. Li T, Liu B, Chen CY, Yang B (2016b) TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J Genet Genomics 43(5):297–305CrossRefPubMedPubMedCentralGoogle Scholar
  89. Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016c) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377PubMedPubMedCentralGoogle Scholar
  90. Li J, Sun Y, Du J, Zhao Y, Xia L (2017a) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10(3):526–529CrossRefPubMedPubMedCentralGoogle Scholar
  91. Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C, Yang J, Bu Q (2017b) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genomics 44(3):175CrossRefPubMedPubMedCentralGoogle Scholar
  92. Li S, Li J, He Y, Xu M, Zhang J, Du W, Zhao Y, Xia L (2019) Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol 37(4):445–450CrossRefPubMedPubMedCentralGoogle Scholar
  93. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao HC, Zhang Y, Zhang R, Chang WJ (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16(7):1295–1310CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25(1):1234–1257CrossRefPubMedPubMedCentralGoogle Scholar
  96. Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to magnaporthe oryzae and salt tolerance. J Exp Bot 63(10):3899–3911CrossRefPubMedPubMedCentralGoogle Scholar
  97. Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017a) CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532CrossRefPubMedPubMedCentralGoogle Scholar
  98. Liu X, Wu S, Xu J, Sui C, Wei J (2017b) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7(3):292–302CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in arabidopsis. Proc Natl Acad Sci 102(6):2232–2237CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10(3):523–525CrossRefPubMedPubMedCentralGoogle Scholar
  103. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284CrossRefPubMedPubMedCentralGoogle Scholar
  104. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16(11):1918–1927CrossRefPubMedPubMedCentralGoogle Scholar
  105. MacPherson CR, Scherf A (2015) Flexible guide-RNA design for CRISPR applications using Protospacer workbench. Nat Biotechnol 33(8):805CrossRefPubMedPubMedCentralGoogle Scholar
  106. Mahas A, Ali Z, Tashkandi M, Mahfouz MM (2019) Virus-mediated genome editing in plants using the CRISPR/Cas9 system. In: Plant genome editing with CRISPR systems. Humana Press, New York, pp 311–326CrossRefGoogle Scholar
  107. Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, NagamangalaKanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904CrossRefPubMedPubMedCentralGoogle Scholar
  108. Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7(1):21CrossRefPubMedPubMedCentralGoogle Scholar
  109. Marco F, Bitrián M, Carrasco P, Rajam MV, Alcázar R, Tiburcio AF (2015) Genetic engineering strategies for abiotic stress tolerance in plants. In: Plant biology and biotechnology. Springer, New Delhi, pp 579–609CrossRefGoogle Scholar
  110. Martirosyan DM, Singh J (2015) A new definition of functional food by FFC: what makes a new definition unique? Funct Food Health Dis 5(6):209–223CrossRefGoogle Scholar
  111. Mehta S, Singh B, Dhakate P, Rahman M, Islam MA (2019a) Rice, marker-assisted breeding, and disease resistance. In: Disease resistance in crop plants. Springer, Cham, pp 83–111CrossRefGoogle Scholar
  112. Mehta S, James D, Reddy MK (2019b) Omics technologies for abiotic stress tolerance in plants: current status and prospects. In: Recent approaches in omics for plant resilience to climate change. Springer, Cham, pp 1–34Google Scholar
  113. Merga IF, Tripathi L, Hvoslef-Eide AK, Gebre E (2019) Application of genetic engineering for control of bacterial wilt disease of Enset, Ethiopia’s sustainability crop. Front Plant Sci 10:133CrossRefPubMedPubMedCentralGoogle Scholar
  114. Mew TW, Alvarez AM, Leach JE, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77(1):5–12CrossRefGoogle Scholar
  115. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233CrossRefPubMedPubMedCentralGoogle Scholar
  116. Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci 115(23):6058–6063CrossRefPubMedPubMedCentralGoogle Scholar
  117. Mikami M, Toki S, Endo M (2015a) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88(6):561–572CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mikami M, Toki S, Endo M (2015b) Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep 34(10):1807–1815CrossRefPubMedPubMedCentralGoogle Scholar
  119. Minkenberg B, Zhang J, Xie K, Yang Y (2019) CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis. Plant Biotechnol J 17(1):5–8PubMedPubMedCentralGoogle Scholar
  120. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42(W1):W401–W407CrossRefPubMedPubMedCentralGoogle Scholar
  121. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo. Nat Methods 12(10):982CrossRefPubMedPubMedCentralGoogle Scholar
  122. Morton LW, Roesch-McNally G, Wilke AK (2017) Upper Midwest farmer perceptions: too much uncertainty about impacts of climate change to justify changing current agricultural practices. J Soil Water Conserv 72(3):215–225CrossRefGoogle Scholar
  123. Muralidharan K, Krishnaveni D, Rajarajeswari NV, Prasad AS (2003) Tungro epidemics and yield losses in paddy fields in India. Curr Sci 85(8):1143–1147Google Scholar
  124. Naito Y, Hino K, Bono H, Ui-Tei K (2014) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123CrossRefPubMedPubMedCentralGoogle Scholar
  125. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164(6):1185–1197CrossRefPubMedPubMedCentralGoogle Scholar
  126. Noman A, Aqeel M, He S (2016) CRISPR/Cas9: tool for qualitative and quantitative plant genome editing. Front Plant Sci 7:1740CrossRefPubMedPubMedCentralGoogle Scholar
  127. Novak S (2019) Plant biotechnology applications of zinc finger technology. In: Transgenic plants. Humana Press, New York, pp 295–310CrossRefGoogle Scholar
  128. Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43CrossRefGoogle Scholar
  129. Oldeman LR, Hakkeling RT, Sombroek WG (2017) World map of the status of human-induced soil degradation: an explanatory note. International Soil Reference and Information Centre, WageningenGoogle Scholar
  130. Oliveros JC, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P, Pazos F (2016) Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res 44(W1):W267–W271CrossRefPubMedPubMedCentralGoogle Scholar
  131. Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685CrossRefPubMedPubMedCentralGoogle Scholar
  132. Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung MH (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13(12):2844CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pacher M, Puchta H (2017) From classical mutagenesis to nuclease-based breeding–directing natural DNA repair for a natural end-product. Plant J 90(4):819–833CrossRefPubMedPubMedCentralGoogle Scholar
  134. Park J, Bae S (2017) Cpf1-database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1. Bioinformatics 34(6):1077–1079CrossRefGoogle Scholar
  135. Park J, Kim JS, Bae S (2016) Cas-database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR/Cas9. Bioinformatics 32(13):2017–2023CrossRefPubMedPubMedCentralGoogle Scholar
  136. Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, Ventura A (2017) GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol 35(4):347CrossRefPubMedPubMedCentralGoogle Scholar
  137. Philander SG (2018) Is the temperature rising?: the uncertain science of global warming. Princeton University Press, PrincetonCrossRefGoogle Scholar
  138. Pliatsika V, Rigoutsos I (2015) “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biol Direct 10(1):4CrossRefPubMedPubMedCentralGoogle Scholar
  139. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967CrossRefPubMedPubMedCentralGoogle Scholar
  140. Pradinaud C, Northey S, Amor B, Bare J, Benini L, Berger M, Boulay AM, Junqua G, Lathuillière MJ, Margni M, Motoshita M (2019) Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources. Int J Life Cycle Assess 24(5):960–974CrossRefPubMedPubMedCentralGoogle Scholar
  141. Pratim Roy M (2019) Malnutrition in children and its determinants: a study from east India. Tropical Doctor. 0049475518824825Google Scholar
  142. Pray C, Huang J, Hu R, Deng H, Yang J, Morin XK (2018) Prospects for cultivation of genetically engineered food crops in China. Glob Food Sec 16:133–137CrossRefGoogle Scholar
  143. Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(3):e0119372CrossRefPubMedPubMedCentralGoogle Scholar
  144. Project, I.R.G.S, Sasaki T (2005) The map-based sequence of the rice genome. Nature 436(7052):793Google Scholar
  145. Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78(5):727–741CrossRefPubMedPubMedCentralGoogle Scholar
  146. Rahman M, Sultana S, Nath D, Kalita S, Chakravarty D, Mehta S, Wani SH, Islam MA (2019) Molecular breeding approaches for disease resistance in sugarcane. In: Disease resistance in crop plants. Springer, Cham, pp 131–155CrossRefGoogle Scholar
  147. Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1(2):169–182CrossRefGoogle Scholar
  148. Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11(2):209–214CrossRefPubMedPubMedCentralGoogle Scholar
  149. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497(7448):254CrossRefPubMedPubMedCentralGoogle Scholar
  150. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537CrossRefGoogle Scholar
  151. Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytol 216(3):682–698CrossRefPubMedPubMedCentralGoogle Scholar
  152. Shah T, Andleeb T, Lateef S, Noor MA (2018) Genome editing in plants: advancing crop transformation and overview of tools. Plant Physiol Biochem 131:12–21CrossRefPubMedPubMedCentralGoogle Scholar
  153. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686CrossRefPubMedPubMedCentralGoogle Scholar
  154. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395CrossRefPubMedPubMedCentralGoogle Scholar
  155. Shao GN, Xie LH, Jiao GA, Wei XJ, Sheng ZH, Tang SQ, Hu PS (2017) CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in rice. Chin J Rice Sci 31(2):216–222Google Scholar
  156. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR/Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402CrossRefPubMedPubMedCentralGoogle Scholar
  157. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H (2017a) Targeted base editing in rice and tomato using a CRISPR/Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443CrossRefPubMedPubMedCentralGoogle Scholar
  158. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H (2017b) Targeted base editing in rice and tomato using a CRISPR/Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443CrossRefPubMedPubMedCentralGoogle Scholar
  159. Shigaki T (2018) Application of biotechnologies in the conservation and utilization of plant genetic resources for food security. In: Food Security and Climate Change, pp 413–431CrossRefGoogle Scholar
  160. Singh B, Mehta S, Aggarwal SK, Tiwari M, Bhuyan SI, Bhatia S, Islam MA (2019) Barley, disease resistance, and molecular breeding approaches. In: Disease resistance in crop plants. Springer, Cham, pp 261–299CrossRefGoogle Scholar
  161. Siro I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance—a review. Appetite 51(3):456–467CrossRefPubMedPubMedCentralGoogle Scholar
  162. Smita S, Lenka SK, Katiyar A, Jaiswal P, Preece J, Bansal KC (2011) QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice. Database 2011:bar037CrossRefPubMedPubMedCentralGoogle Scholar
  163. Soda N, Verma L, Giri J (2018) CRISPR/Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 131:2–11CrossRefPubMedPubMedCentralGoogle Scholar
  164. Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotechnol 32:47–53CrossRefPubMedPubMedCentralGoogle Scholar
  165. Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633CrossRefPubMedPubMedCentralGoogle Scholar
  166. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433–443CrossRefPubMedPubMedCentralGoogle Scholar
  167. Subramanian KR (2018) The crisis of consumption of natural resources. Int J Rec Innov Acad Res 2(8–19):8–19Google Scholar
  168. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9(4):628–631CrossRefPubMedPubMedCentralGoogle Scholar
  169. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298PubMedPubMedCentralGoogle Scholar
  170. Sun J, Liu H, Liu J, Cheng S, Peng Y, Zhang Q, Yan J, Liu HJ, Chen LL (2019) CRISPR-local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes. Bioinformatics 35(14):2501–2503CrossRefPubMedPubMedCentralGoogle Scholar
  171. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945CrossRefPubMedPubMedCentralGoogle Scholar
  172. Takeda Y, Suzuki S, Tobimatsu Y, Osakabe K, Osakabe Y, Ragamustari SK, Sakamoto M, Umezawa T (2019) Lignin characterization of rice coniferaldehyde 5-hydroxylase loss-of-function mutants generated with the CRISPR/Cas9 system. Plant J 97(3):543–554CrossRefPubMedPubMedCentralGoogle Scholar
  173. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER (2017a) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3(3):17018CrossRefPubMedPubMedCentralGoogle Scholar
  174. Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y (2017b) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):14438CrossRefPubMedPubMedCentralGoogle Scholar
  175. Tang X, Ren Q, Yang L, Bao Y, Zhong Z, He Y, Liu S, Qi C, Liu B, Wang Y, Sretenovic S (2019) Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas 12a mediated plant genome editing. Plant Biotechnol J 17(7):1431–1445CrossRefPubMedPubMedCentralGoogle Scholar
  176. Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58(1):46–56PubMedPubMedCentralGoogle Scholar
  177. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 3(12):2233–2238CrossRefPubMedPubMedCentralGoogle Scholar
  178. Valin H, Sands RD, Van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, Hasegawa T, Havlik P, Heyhoe E (2014) The future of food demand: understanding differences in global economic models. Agric Econ 45(1):51–67CrossRefGoogle Scholar
  179. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350CrossRefPubMedPubMedCentralGoogle Scholar
  180. Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36(1):6–7CrossRefPubMedPubMedCentralGoogle Scholar
  181. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027CrossRefPubMedPubMedCentralGoogle Scholar
  182. Wang M, Mao Y, Lu Y, Tao X, Zhu JK (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10(7):1011–1013CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H (2018) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16(1):137–150CrossRefPubMedPubMedCentralGoogle Scholar
  184. Wang X, Han Y, Feng X, Li YZ, Qin BX, Luo JJ, Wei Z, Qiu YF, Liu F, Li RB (2019) Breeding of Indica glutinous cytoplasmic male sterile line WX209A via CRISPR/Cas9 mediated genomic editing. Czech J Genet Plant Breed 55:93–100CrossRefGoogle Scholar
  185. Wingeyer A, Amado T, Pérez-Bidegain M, Studdert G, Varela C, Garcia F, Karlen D (2015) Soil quality impacts of current South American agricultural practices. Sustainability 7(2):2213–2242CrossRefGoogle Scholar
  186. Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16(1):218CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44(4):693–705CrossRefPubMedPubMedCentralGoogle Scholar
  188. Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664CrossRefPubMedPubMedCentralGoogle Scholar
  189. Wu R, Lucke M, Jang YT, Zhu W, Symeonidi E, Wang C, Fitz J, Xi W, Schwab R, Weigel D (2018) An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods 14(1):65CrossRefPubMedPubMedCentralGoogle Scholar
  190. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6(6):1975–1983CrossRefPubMedPubMedCentralGoogle Scholar
  191. Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu YG (2017) CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10(9):1246–1249CrossRefPubMedPubMedCentralGoogle Scholar
  192. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442CrossRefPubMedPubMedCentralGoogle Scholar
  193. Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14(1):327CrossRefPubMedPubMedCentralGoogle Scholar
  194. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7(1):5CrossRefPubMedPubMedCentralGoogle Scholar
  195. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43(8):529CrossRefPubMedPubMedCentralGoogle Scholar
  196. Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15(6):713–717CrossRefPubMedPubMedCentralGoogle Scholar
  197. Xuan TD, Anh TT, Tran HD, Khanh TD, Dat TD (2019) Mutation breeding of a N-methyl-N-nitrosourea (MNU)-induced Rice (Oryza sativa L. ssp. Indica) population for the yield attributing traits. Sustainability 11(4):1062CrossRefGoogle Scholar
  198. Yin K, Qiu JL (2019) Genome editing for plant disease resistance: applications and perspectives. Philos Trans R Soc B 374(1767):20180322CrossRefGoogle Scholar
  199. Yin K, Han T, Liu G, Chen T, Wang Y, Yu AY, Liu Y (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926CrossRefPubMedPubMedCentralGoogle Scholar
  200. Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3(8):17107CrossRefPubMedPubMedCentralGoogle Scholar
  201. Yin X, Anand A, Quick P, Bandyopadhyay A (2019) Editing a stomatal developmental gene in rice with CRISPR/Cpf1. In: Plant genome editing with CRISPR systems. Humana Press, New York, pp 257–268CrossRefGoogle Scholar
  202. Youssef D, Nihou A, Partier A, Tassy C, Paul W, Rogowsky PM, Beckert M, Barret P (2018) Induction of targeted deletions in transgenic bread wheat (Triticum aestivum L.) using customized meganuclease. Plant Mol Biol Report 36(1):71–81CrossRefGoogle Scholar
  203. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771CrossRefPubMedPubMedCentralGoogle Scholar
  205. Zhang H (2019) Genetically modified organisms (GMOs) as the new hope. In: Securing the ‘rice bowl’. Palgrave Macmillan, Singapore, pp 95–123CrossRefGoogle Scholar
  206. Zhang H, Wu Z, Wang C, Li Y, Xu JR (2014) Germination and infectivity of microconidia in the rice blast fungus Magnaporthe oryzae. Nat Commun 5:4518CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zhang Y, Zang Q, Xu B, Zheng W, Ban R, Zhang H, Yang Y, Hao Q, Iqbal F, Li A, Shi Q (2016) IsomiR Bank: a research resource for tracking IsomiRs. Bioinformatics 32(13):2069–2071CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zhang J, Zhang H, Botella JR, Zhu JK (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60(5):369–375CrossRefPubMedPubMedCentralGoogle Scholar
  209. Zhang T, Liang J, Wang M, Li D, Liu Y, Chen TH, Yang X (2019) Genetic engineering of the biosynthesis of glycine betaine enhances the fruit development and size of tomato. Plant Sci 280:355–366CrossRefPubMedPubMedCentralGoogle Scholar
  210. Zhao H, Yao W, Ouyang Y, Yang W, Wang G, Lian X, Xing Y, Chen L, Xie W (2014) RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res 43(D1):D1018–D1022CrossRefPubMedPubMedCentralGoogle Scholar
  211. Zheng Y, Zhang N, Martin GB, Fei Z (2019) Plant genome editing database (PGED): a call for submission of information about genome-edited plant mutants. Mol Plant 12(2):127–129CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zhong Z, Zhang Y, You Q, Tang X, Ren Q, Liu S, Yang L, Wang Y, Liu X, Liu B, Zhang T (2018) Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant 11(7):999–1002CrossRefPubMedPubMedCentralGoogle Scholar
  213. Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82(4):632–643CrossRefPubMedPubMedCentralGoogle Scholar
  214. Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR/Cas9 genome-editing systems. PLoS One 9(9):e108424CrossRefPubMedPubMedCentralGoogle Scholar
  215. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35(1):95–104CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sahil Mehta
    • 1
  • Shambhu Krishan Lal
    • 1
  • Kuleshwar Prasad Sahu
    • 2
  • Ajay Kumar Venkatapuram
    • 1
  • Mukesh Kumar
    • 2
  • Vijay Sheri
    • 1
  • Panditi Varakumar
    • 1
  • Chandrapal Vishwakarma
    • 3
  • Renu Yadav
    • 1
  • M. Rizwan Jameel
    • 4
  • Miraj Ali
    • 1
  • V. Mohan M. Achary
    • 1
  • Malireddy K. Reddy
    • 1
  1. 1.Crop Improvement Group, International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Division of Plant PathologyICAR-Indian Agriculture Research InstituteNew DelhiIndia
  3. 3.Division of Plant PhysiologyICAR-Indian Agriculture Research InstituteNew DelhiIndia
  4. 4.Centre for Interdisciplinary Research in Basic SciencesJamia Millia Islamia UniversityNew DelhiIndia

Personalised recommendations