Advertisement

Molecular Mechanisms of Sex Pheromone Reception in Moths

  • Yusuke Shiota
  • Takeshi SakuraiEmail author
Chapter
  • 73 Downloads
Part of the Entomology Monographs book series (ENTMON)

Abstract

Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone detection in male moths is the high degree of specificity and sensitivity at all levels from sensory to behavior. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the reception of sex pheromones, which involve several molecular components, such as pheromone-binding proteins, olfactory receptor co-receptor proteins, sex pheromone receptor proteins, and sensory neuron membrane proteins. In this chapter, we focus on these latest advances and discuss what they unraveled about underlying mechanisms of specific and sensitive detection of sex pheromones in moths.

Keywords

Sex pheromone reception Pheromone-binding proteins Pheromone receptors Sensory neuron membrane proteins 

References

  1. Anderson P, Hansson BS, Löfqvist J (1995) Plant-odour-specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20(3):189–198CrossRefGoogle Scholar
  2. Anton S, Hansson BS (1995) Sex pheromone and plant-associated odor processing in antennal lobe interneurons of male Spodoptera littoralis (Lepidoptera: Noctuidae). J Comp Physiol A 176:773–789CrossRefGoogle Scholar
  3. Baker TC (2008) Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J Chem Ecol 34(7):971–981PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baker TC, Kuenen LP (1982) Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216(4544):424–427PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baker TC, Willis MA, Haynes KF, Phelan PL (1985) A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol Entomol 10(3):257–265CrossRefGoogle Scholar
  6. Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20PubMedPubMedCentralGoogle Scholar
  7. Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289PubMedCrossRefPubMedCentralGoogle Scholar
  8. Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284Google Scholar
  9. Clyne PJ, Warr CG, Freeman MC, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338CrossRefGoogle Scholar
  10. Collins CW, Potts SF (1932) Attractants for the flying gypsy moths as an aid in locating new infestations. Techn Bull 336(336):1–44Google Scholar
  11. Daimon T, Kiuchi T, Takasu Y (2014) Recent progress in genome engineering techniques in the silkworm. Bombyx mori Dev Growth Differ 6(1):14–25CrossRefGoogle Scholar
  12. Engsontia P, Sangket U, Chotigeat W, Satasook C (2014) Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J Mol Evol 79:21–39PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ernst KD (1969) Die Feinstruktur von Riechsensillen auf der Antenne des Aaskiifers Necrophorus (Coleoptera). Structure 94:72–102Google Scholar
  14. Fleischer J, Krieger J (2018) Insect pheromone receptors – key elements in sensing intraspecific chemical signals. Front Cell Neurosci 12:425PubMedPubMedCentralCrossRefGoogle Scholar
  15. Forstner M, Gohl T, Breer H, Krieger J (2006) Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invertebr Neurosci 6(4):177–187CrossRefGoogle Scholar
  16. Forstner M, Gohl T, Gondesen I, Raming K, Breer H, Krieger J (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem Senses 33(3):291–299PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60(1):31–39CrossRefGoogle Scholar
  18. Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH (2009) The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10:332PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gräter F, Xu W, Leal W, Grubmüller H (2006) Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure 14(10):1577–1586PubMedCrossRefPubMedCentralGoogle Scholar
  20. Große-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gu SH, Zhou JJ, Wang GR, Zhang YJ, Guo YY (2013) Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol Biol 43(3):237–251PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hansson BS, Ljungberg H, Hallberg E, Lofstedt C (1992) Functional specialization of olfactory glomeruli in a moth. Science 256(5061):1313–1315PubMedCrossRefPubMedCentralGoogle Scholar
  23. He P, Li ZQ, Liu CC, Liu SJ, Dong SL (2014) Two esterases from the genus Spodoptera degrade sex pheromones and plant volatiles. Genome 57(4):201–208PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hooper AM, Dufour S, He X, Muck A, Zhou J, Almeida R, Field LM, Svatos A, Pickett JA (2009) High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues. Chem Commun 38:5725–5727CrossRefGoogle Scholar
  26. Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci 102:14075–14079PubMedCrossRefPubMedCentralGoogle Scholar
  27. Iwano M, & Kanzaki R. (2005). Immunocytochemical identification of neuroactive substances in the antennal lobe of the male silkworm moth Bombyx mori. Zoological Science 22(2):199–211Google Scholar
  28. Jacquin-Joly E, Merlin C (2004) Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol 30:2359–2397PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci 105(31):10996–11001PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jordan MD, Anderson A, Begum D, Carraher C, Authier A, Marshall SD, Kiely A, Gatehouse LN, Greenwood DR, Christie DL, Kralicek AV, Trowell SC, Newcomb RD (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem Senses 34:383–394PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kaissling KE (1987) R. H. Wright lectures on insect olfaction. Simon Fraser Univ, BurnabyGoogle Scholar
  32. Kaissling KE (2009) Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(10):895–922PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kaissling KE (2013) Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(11):879–896PubMedCrossRefGoogle Scholar
  34. Kaissling KE (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26(2):125–150PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kaissling KE, Kasang G, Bestmann HJ, Stransky W, Vostrowsky O (1978) A new pheromone of the silkworm moth Bombyx mori – sensory pathway and behavioral effect. Naturwissenschaften 65(7):382–384CrossRefGoogle Scholar
  36. Kanzaki R, Sugi N, Shibuya T (1992) Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci 9(3):515–527Google Scholar
  37. Kasang G (1971) Bombykol reception and metabolism on the antennae of the silkmoth Bombyx mori. In: Ohloff G, Thomas AF (eds) Gustation and olfaction. Academic, London, pp 245–250Google Scholar
  38. Kasang G (1973) Physikochemische vorgange beim riechen des seidenspinners. Naturwissenschaften 60:95–101CrossRefGoogle Scholar
  39. Kasang G, Kaissling KE (1972) Specificity of primary and secondary olfactory processes in Bombyx antennae. In: Schneider D (ed) International symposium Olfaction and Taste IV. Wissensch Verlagsgesellsch, Stuttgart, pp 200–206Google Scholar
  40. Kasang G, Von Proff L, Nicholls M (1988) Enzymatic conversion and degradation of sex pheromones in antennae of the male silkworm moth Antheraea polyphemus. Zeitschrift Fur Naturforschung Sect C J Biosci 43(3–4):275–284CrossRefGoogle Scholar
  41. Kasang G, Nicholls M, Keil T, Kanaujia S (1989a) Enzymatic conversion of sex pheromones in olfactory hairs of the male silkworm moth Antheraea polyphemus. Zeitschrift Fur Naturforschung – Sect C J Biosci 44(11–12):920–926CrossRefGoogle Scholar
  42. Kasang G, Nicholls M, von Proff L (1989b) Sex pheromone conversion and degradation in antennae of the male silkworm moth Bombyx mori. L. Experientia 45:81–87CrossRefGoogle Scholar
  43. Keil TA (1982) Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules. Tissue Cell 14(3):451–462PubMedCrossRefPubMedCentralGoogle Scholar
  44. Klein U (1987) Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem 17(8):1193–1204CrossRefGoogle Scholar
  45. Kohel MAR (2006) The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem Senses 31(2):93–105CrossRefGoogle Scholar
  46. Koutroumpa FA, Monsempes C, François MC, de Cian A, Royer C, Concordet JP, Jacquin-Joly E (2016) Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 6:29620PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kramer E (1992) Attractivity of pheromone surpassed by time-patterned application of two nonpheromone compounds. J Insect Behav 5(1):83–97CrossRefGoogle Scholar
  48. Krieger J, Nickisch-rosenegk E, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26(3):297–307PubMedCrossRefPubMedCentralGoogle Scholar
  49. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714PubMedPubMedCentralCrossRefGoogle Scholar
  50. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391CrossRefGoogle Scholar
  51. Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Macallister IE, Kavanaugh MP, Wanner KW (2012) Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci 109(35):14081–14086PubMedCrossRefPubMedCentralGoogle Scholar
  52. Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10(9):e1004600PubMedPubMedCentralCrossRefGoogle Scholar
  53. Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE, Dickens JC, Jang EB (1993) Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology 4(3–4):145–152CrossRefGoogle Scholar
  54. Liu NY, Liu CC, Dong SL (2013) Functional differentiation of pheromone-binding proteins in the common cutworm Spodoptera litura. Comp Biochem Physiol A Mol Integr Physiol 165(2):254–262PubMedCrossRefPubMedCentralGoogle Scholar
  55. Liu Q, Liu W, Zeng B, Wang G, Hao D, Huang Y (2017) Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. Insect Biochem Mol Biol 86:58–67PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lundin C, Käll L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, Von Heijne G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581:5601–5604PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mafra-Neto A, Cardé RT (1995) Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol Entomol 20(2):117–133CrossRefGoogle Scholar
  58. Mitsuno H, Sakurai T, Murai M, Yasuda T, Kugimiya S, Ozawa R, Toyohara H, Takabayashi J, Miyoshi H, Nishioka T (2008) Identification of receptors of main sex-pheromone components of three Lepidopteran species. Eur J Neurosci 28:893–902PubMedCrossRefPubMedCentralGoogle Scholar
  59. Mitsuno H, Sakurai T, Namiki S, Mitsuhashi H, Kanzaki R (2015) Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens Bioelectron 65:287–294PubMedCrossRefPubMedCentralGoogle Scholar
  60. Murlis J, Jones C (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6:71–86CrossRefGoogle Scholar
  61. Murlis J, Elkinton JS, Carde RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532CrossRefGoogle Scholar
  62. Murlis J, Willis MA, Cardé RT (2000) Spatial and temporal structures of pheromone plumes in fields and forests. Physiol Entomol 25:211–222CrossRefGoogle Scholar
  63. Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307(5715):1638–1642CrossRefGoogle Scholar
  64. Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(5):501–515PubMedCrossRefPubMedCentralGoogle Scholar
  65. Ochieng SA, Park KC, Baker TC (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188(4):325–333PubMedCrossRefPubMedCentralGoogle Scholar
  66. Party V, Hanot C, Sain I, Rochat D, Michel R (2009) Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem Senses 34:763–774PubMedCrossRefPubMedCentralGoogle Scholar
  67. Pelletier J, Bozzolan F, Solvar M, François MC, Jacquin-Joly E, Maïbèche-Coisne M (2007) Identification of candidate aldehyde oxidases from the silkworm Bombyx mori potentially involved in antennal pheromone degradation. Gene 404(1–2):31–40PubMedCrossRefPubMedCentralGoogle Scholar
  68. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63(14):1658–1676PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pophof B (1997) Olfactory responses recorded from sensilla coeloconica of the silkmoth Bombyx mori. Physiol Entomol 22(3):239–248CrossRefGoogle Scholar
  70. Pregitzer P, Schubert M, Breer H, Hansson BS, Sachse S, Krieger J (2012) Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front Cell Neurosci 6:42PubMedPubMedCentralCrossRefGoogle Scholar
  71. Reddy GVP, Guerrero A (2010) New pheromones and insect control strategies. Vitam Horm 83(C):493–519PubMedCrossRefPubMedCentralGoogle Scholar
  72. Robertson HM, Martos R, Sears CR, Todres EZ, Walden KKO, Nardi JB (1999) Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol Biol 8(4):501–518PubMedCrossRefPubMedCentralGoogle Scholar
  73. Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272(23):14792–14799PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rybczynski R, Vogt RG, Lerner MR (1990) Antennal-specific pheromone-degrading aldehyde oxidases from the moths Antheraea polyphemus and Bombyx mori. J Biol Chem 265:19712–19715PubMedPubMedCentralGoogle Scholar
  75. Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci 101:16653–16658PubMedCrossRefPubMedCentralGoogle Scholar
  76. Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kanzaki R (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7(6):e1002115PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sakurai T, Namiki S, Kanzaki R (2014) Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Physiol 5:125PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sakurai T, Mitsuno H, Mikami A, Uchino K, Tabuchi M, Zhang F, Kanzaki R (2015) Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth. Sci Rep 5:11001PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone- binding-protein-bombykol complex. Chem Biol 7(2):143–151PubMedCrossRefPubMedCentralGoogle Scholar
  80. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002CrossRefGoogle Scholar
  81. Schneider D (1957) Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13(2):89–91CrossRefGoogle Scholar
  82. Schneider D, Boeckh J (1962) Rezeptorpotential und nervenimpulse einzel-ner olfaktorischer sensillen der insektenan-tenne. Z Vergl Physiol 45:405–412CrossRefGoogle Scholar
  83. Shields VDC, Hildebrand JG (2001) Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc Res Tech 55(5):307–329PubMedPubMedCentralCrossRefGoogle Scholar
  84. Shiota Y, Sakurai T, Daimon T, Mitsuno H, Fujii T, Matsuyama S, Sezutsu H, Ishikawa Y, Kanzaki R (2018) In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori. Sci Rep 8(1):1–8CrossRefGoogle Scholar
  85. Slifer EH (1970) The structure of arthropod chemoreceptors. Annu Rev Entomol 15(1):121–142CrossRefGoogle Scholar
  86. Steinbrecht RA (1970) Stimulus transfering tubules in insect olfactory receptors. In: Proceeding of 7th International Congress on Electron Microscopy. GrenobleGoogle Scholar
  87. Steinbrecht RA (1973) Der Feinbau olfaktorischer Sensillen des Seidenspinners (Insecta, Lepidoptera). Rezeptorforts„tze und reizleitender Apparat. Z Zellforsch 139:533–565PubMedCrossRefPubMedCentralGoogle Scholar
  88. Sun M, Liu Y, Wang G (2013) Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xylostella. J Insect Physiol 59(1):46–55PubMedCrossRefPubMedCentralGoogle Scholar
  89. Tabuchi M, Sakurai T, Mitsuno H, Namiki S, Minegishi R, Shiotsuki T, Uchino K, Sezutsu H, Tamura T, Haupt SS, Nakatani K, Kanzaki R (2013) Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A 110(38):15455–15460PubMedPubMedCentralCrossRefGoogle Scholar
  90. Takasu Y, Sajwan S, Daimon T, Osanai-Futahashi M, Uchino K, Sezutsu H, Tamura T, Zurovec M (2013) Efficient TALEN construction for Bombyx mori gene targeting. PLoS One 8:e73458PubMedPubMedCentralCrossRefGoogle Scholar
  91. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332PubMedCrossRefPubMedCentralGoogle Scholar
  92. Vickers NJ, Baker TC (1994) Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc Natl Acad Sci U S A 91(13):5756–5760PubMedPubMedCentralCrossRefGoogle Scholar
  93. Vickers NJ, Baker TC (1996) Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J Comp Physiol A 178:831–847CrossRefGoogle Scholar
  94. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161PubMedPubMedCentralCrossRefGoogle Scholar
  95. Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci 82(24):8827–8831PubMedCrossRefPubMedCentralGoogle Scholar
  96. Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC (2009) The insect SNMP gene family. Insect Biochem Mol Biol 39(7):448–456PubMedCrossRefPubMedCentralGoogle Scholar
  97. Vogt RG, Große-Wilde E, Zhou JJ (2015) The Lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem Mol Biol 62:142–153PubMedPubMedCentralCrossRefGoogle Scholar
  98. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96(5):725–736PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159PubMedCrossRefPubMedCentralGoogle Scholar
  100. Wang Q, Shang Y, Hilton DS, Inthavong K, Zhang D, Elgar MA (2018) Antennal scales improve signal detection efficiency in moths. Proc R Soc B Biol Sci 285(1874):20172832CrossRefGoogle Scholar
  101. Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011PubMedCrossRefPubMedCentralGoogle Scholar
  102. Xu P, Hooper AM, Pickett JA, Leal WS (2012) Specificity determinants of the silkworm moth sex pheromone. PLoS One 7(9):2–11Google Scholar
  103. Yang B, Fujii T, Ishikawa Y, Matsuo T (2016) Targeted mutagenesis of an odorant receptor co-receptor using TALEN in Ostrinia furnacalis. Insect Biochem Mol Biol 70:53–59PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yang K, Huang LQ, Ning C, Wang CZ (2017) Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. elife 6:e29100PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ye ZF, Liu XL, Han Q, Liao H, Dong XT, Zhu GH, Dong SL (2017) Functional characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system. Sci Rep 7(1):8470PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ziegelberger G (1995) Redox-shift of the pheromone-binding protein in the silkmoth Antheraea polyphemus. Eur J Biochem 232(3):706–711PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Reseach Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
  2. 2.Department of Agricultural Innovation for Sustainable Society, Faculty of AgricultureTokyo University of AgricultureAtsugiJapan

Personalised recommendations