Introduction to Cancer Stem Cells

  • Anisur Rahman Khuda-Bukhsh
  • Asmita Samadder
  • Santu Kumar Saha


Cancer is a persistent public health-care issue of modern life that poses a global challenge. It comprises several diseases that basically involve abnormal cell growth and have a potential to invade or metastasize to other distant organ systems, spreading the disease to other part(s) of the body. Development of resistance to conventional therapies and disease recurrence are some common phenomena encountered in almost all types of cancer. Understanding “hallmarks of cancer” and “tumor microenvironment” is therefore important for development of successful therapy for cancer. Numerous drugs have been designed and tested for their anticancer efficacy over decades to find out a complete cure for this lethal disease, but without desirable success so far. The concept and role of “stem cell” therapy in oncology research have drawn considerable interest in recent years. Thus, emphasis has been given on proper identification and characterization of the “cancer stem cells” and “other stem cells” for elucidation of the signaling cascades involved in the process of cancer limitation and progression (and resurgence). In the introductory part of this book, an attempt has been made to provide an overall idea on different aspects of cancer stem cells, optimization of rate and type of cell growth, and their associative cure strategy by adopting a well-defined scientific perspective.


Cancer Stem cell types Cancer stem cell Stem cell therapy Targeted therapy Therapy resistance 



Acute myeloid leukemia


Cancer stem cell (CSC)


Deoxyribonucleic acid


Epithelial to mesenchymal transition


Endothelial progenitor cell


Fluorescence-activated cell sorter


Hematopoietic stem cell


Hematopoietic stem cell transplant


Mesenchymal-epithelial transition


Mesenchymal stem cell


Neural stem cell


Reactive oxygen species


Somatic stem cell


Tumor suppressor gene


Hematopoietic stem cell transplants


  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRefGoogle Scholar
  2. 2.
    Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, Akbani R, Bowlby R, Wong CK, Wiznerowicz M, Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H, Malta TM, Cancer Genome Atlas Network, Stuart JM, Benz CC, Laird PW (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173:291–304PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  4. 4.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jones SE (2008) Metastatic breast cancer: the treatment challenge. Clin Breast Cancer 8:224–233PubMedCrossRefGoogle Scholar
  6. 6.
    Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22PubMedCrossRefGoogle Scholar
  7. 7.
    Daigo Y, Nishiwaki T, Kawasoe T, Tamari M, Tsuchiya E, Nakamura Y (1999) Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res 59:1966–1972PubMedGoogle Scholar
  8. 8.
    Lodish H (2004) Molecular cell biology, 5th edn, pp 935–973Google Scholar
  9. 9.
    De Francesco EM, Sotgia F, Lisanti MP (2018) Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 475(9):1611–1634PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  11. 11.
    Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319PubMedCrossRefGoogle Scholar
  13. 13.
    Brien-ball CO, Biddle A (2017) Reprogramming to developmental plasticity in cancer stem cells. Dev Biol 430(2):266–274CrossRefGoogle Scholar
  14. 14.
    Banyard J, Bielenberg DR (2016) The role of EMT and MET in cancer dissemination. HHS Publ Access 56:403–413Google Scholar
  15. 15.
    Chiang SPH, Cabrera RM, Segall JE (2016) Tumor cell intravasation. Am J Physiol Cell Physiol 311(1):C1–C14PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kuşoğlu A, Avcı CB (2019) Cancer stem cells: a brief review of the current status. Gene 681:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ajani JA, Song S, Hochster HS, Steinberg IB (2015) Cancer stem cells: the promise and the potential. Semin Oncol 42:S3–S17PubMedCrossRefGoogle Scholar
  19. 19.
    Kyjacova L, Hubackova S, Krejcikova K, Strauss R, Hanzlikova H, Dzijak R, Imrichova T, Simova J, Reinis M, Bartek J, Hodny Z (2015) Radiotherapy-induced plasticity of prostate cancer mobilizes stem-like non-adherent, Erk signaling- dependent cells. Cell Death Differ 22(6):898–911PubMedCrossRefGoogle Scholar
  20. 20.
    Kroon P, Berry PA, Stower MJ, Rodrigues G, Mann VM, Simms M, Bhasin D, Chettiar S, Li C, Li PK, Maitland NJ, Collins AT (2013) JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 16:5288–5298CrossRefGoogle Scholar
  21. 21.
    Zhou W, Wang G, Guo S (2013) Regulation of angiogenesis via notch signaling in breast cancer and cancer stem cells. Biochim Biophys Acta 1836(2):304–320PubMedPubMedCentralGoogle Scholar
  22. 22.
    Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, Kunz-Schughart LA (2013) CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 229(3):355–378PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five- transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90(12):5013–5021PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Pajonk F, Vlashi E (2013) Characterization of the stem cell niche and its importance in radiobiological response. Semin Radiat Oncol 23(4):237–241PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Seita J, Rossi DJ, Weissman IL (2010) Differential DNA damage response in stem and progenitor cells. Cell Stem Cell 7:145–147PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Tran C, Damaser MS (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82(83):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Liang G, Zhang Y (2013) Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res 23(1):49–69PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhang J, Espinoza LA, Kinders RJ, Lawrence SM, Pfister TD, Zhou M, Veenstra TD, Thorgeirsson SS, Jessup JM (2013) NANOG modulates stemness in human colorectal cancer. Oncogene 32(37):4397–4405PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kanojia D, Balyasnikova IV, Morshed RA, Frank RT, Yu D, Zhang L, Spencer DA, Kim JW, Han Y, Yu D, Ahmed AU, Aboody KS, Lesniak MS (2015) Neural stem cells secreting anti-her2 antibody improve survival in a preclinical model of her2 overexpressing breast cancer brain metastases. Stem Cells 33:2985–2994PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lee HJ, Doo SW, Kim DH, Cha YJ, Kim JH, Song YS, Kim SU (2013) Cytosine deaminase-expressing human neural stem cells inhibit tumor growth in prostate cancer-bearing mice. Cancer Lett 335:58–65PubMedCrossRefGoogle Scholar
  32. 32.
    Yi BR, Kim SU, Choi KC (2014) Co-treatment with therapeutic neural stem cells expressing carboxyl esterase and CPT-11 inhibit growth of primary and metastatic lung cancers in mice. Oncotarget 5:12835–12848PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Goligorsky MS, Salven P (2013) Concise review: endothelial stem and progenitor cells and their habitats. Stem Cells Transl Med 2:499–504PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Turovets N, Semechkin A, Kuzmichev L, Janus J, Agapova L, Revazova E (2011) Derivation of human parthenogenetic stem cell lines. Methods Mol Biol 767:37–54PubMedCrossRefGoogle Scholar
  35. 35.
    Lin G, Lu G (2008) Human parthenogenetic stem cells. Cell Res 18:S23CrossRefGoogle Scholar
  36. 36.
    Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66(9):4553–4557PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Tomasetti C, Vogelstein B (2015) Cancer etiology: variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Prince ME, Ailles LE (2008) Cancer stem cells in head and neck squamous cell cancer. J Clin Oncol 26:2871–2875PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A (2013) Discovery of the cancer stem cell related determinants of radio resistance. Radiother Oncol 108(3):378–387PubMedCrossRefGoogle Scholar
  40. 40.
    Li X, Lewis MT, Huang Z, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679PubMedCrossRefGoogle Scholar
  41. 41.
    Creighton CJ, Li X, Landis M (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. PNAS 106:13820–13825PubMedCrossRefGoogle Scholar
  42. 42.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci 104(3):973–978PubMedCrossRefGoogle Scholar
  43. 43.
    Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, notch, and hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Keysar SB, Le PN, Anderson RT, Morton JJ, Bowles DW, Paylor JJ, Vogler BW, Thorburn J, Fernandez P, Glogowska MJ, Takimoto SM, Sehrt DB, Gan GN, Eagles-Soukup JR, Serracino H, Hirsch FR, Lucia MS, Thorburn A, Song JI, Wang XJ, Jimeno A (2013) Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res 73(11):3381–3392PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Song J, Chang I, Chen Z, Kang M, Wang CY (2010) Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal wnt signaling. PLoS One 5(7):e11456PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mozet C, Wichmann G, Dietz A (2011) Translational approaches in cancer stem cell research. HNO 59(9):859–865PubMedCrossRefGoogle Scholar
  47. 47.
    Li J, Zhou BP (2011) Activation of b-catenin and Akt pathways by twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 11:49PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Koukourakis MI, Giatromanolaki A, Tsakmaki V, Danielidis V, Sivridis E (2012) Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head–neck cancer. Br J Cancer 106(5):846–853PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, Zhang N, El-Naggar AK, Jasser SA, Weinstein JN, Treviño L, Drummond JA, Muzny DM, Wu Y, Wood LD, Hruban RH, Westra WH, Koch WM, Califano JA, Gibbs RA, Sidransky D, Vogelstein B, Velculescu VE, Papadopoulos N, Wheeler DA, Kinzler KW, Myers JN (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333:1154–1157PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Liras A (2010) Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 8:131PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hatzimichael E, Tuthill M (2010) Hematopoietic stem cell transplantation. Stem Cells Cloning 3:105–117PubMedPubMedCentralGoogle Scholar
  53. 53.
    Razvi ES, Oosta GM (2010) Stem cells for cellular therapy space. Drug Discov Today 11:37–40Google Scholar
  54. 54.
    Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci 97:12846–12851PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Stuckey DW, Shah K (2013) TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 19:685–694PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ong HT, Federspie MJ, Guo CM, Ooi LL, Russell SJ, Peng KW, Hui KM (2013) Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J Hepatol 59:999–1006PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Samadder A, Abraham SK, Khuda-Bukhsh AR (2016) Nanopharmaceutical approach using pelargonidin towards enhancement of efficacy for prevention of alloxan-induced DNA damage in L6 cells via activation of PARP and p53. Environ Toxicol Pharmacol 43:27–37PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Samadder A, Tarafdar D, Abraham SK, Ghosh K, Khuda-Bukhsh AR (2017) Nano-Pelargonidin protects hyperglycemic-induced L6 cells against mitochondrial dysfunction. Planta Med 83(5):468–475PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Samadder A, Das J, Das S, De A, Saha SK, Bhattacharyya SS, Khuda-Bukhsh AR (2013b) Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: some novel findings. Toxicol Appl Pharmacol 267(1):57–73PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Samadder A, Das S, Das J, Khuda-Bukhsh AR (2013a) Relative efficacies of insulin and poly (lactic-co-glycolic) acid encapsulated nano-insulin in modulating certain significant biomarkers in arsenic intoxicated L6 cells. Colloids Surf B Biointerfaces 109:10–19PubMedCrossRefGoogle Scholar
  61. 61.
    Bhattacharyya SS, Paul S, De A, Das D, Samadder A, Boujedaini N, Khuda-Bukhsh AR (2011) Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target. Toxicol Appl Pharmacol 253(3):270–281PubMedCrossRefGoogle Scholar
  62. 62.
    Das J, Das S, Samadder A, Bhadra K, Khuda-Bukhsh AR (2012) Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur J Pharm Sci 47(2):313–324PubMedCrossRefGoogle Scholar
  63. 63.
    Das J, Samadder A, Mondal J, Abraham SK, Khuda-Bukhsh AR (2016) Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction. Environ Toxicol Pharmacol 46:147–157PubMedCrossRefGoogle Scholar
  64. 64.
    Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR (2013b) Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf B Biointerfaces 101:325–336PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR (2013a) Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol Lett 223(2):124–138PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73(3):549–559PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Tian X, Ni X, Xu H, Zheng L, ZhuGe D, Chen B, Lu C, Yuan J, Zhao Y (2017) Prevention of doxorubicin-induced cardiomyopathy using targeted MaFGF mediated by nanoparticles combined with ultrasound-targeted MB destruction. Int J Nanomedicine 12:7103–7119PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rubio L, Annangi B, Vila L, Hernández A, Marcos R (2016) Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch Toxicol 90(2):269–278PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Agarwal H, Nakara A, Shanmugam VK (2019) Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: a review. Biomed Pharmacother 109:2561–2572PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, Fu C, Li Y, Qu Q, Zhang Y, Ji S, Chen L, Chen D, Tang F (2011) Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 5:7462–7470PubMedCrossRefGoogle Scholar
  71. 71.
    Dawood S, Austin L, Cristofanilli M (2014) Cancer stem cells: implications for cancer therapy. Oncology (Williston Park) 28:1101–1107. 1110Google Scholar
  72. 72.
    Xiao J, Mu J, Liu T, Xu H (2017) Dig the root of cancer: targeting cancer stem cells therapy. J Med Discov 2017:D17003Google Scholar
  73. 73.
    Diehn M, Cho RW, Clarke MF (2009) Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol 19(2):78–86PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY (2018) Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018:5416923PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anisur Rahman Khuda-Bukhsh
    • 1
  • Asmita Samadder
    • 2
  • Santu Kumar Saha
    • 3
  1. 1.Emeritus Professor of University Grants Commission at University of KalyaniKalyaniIndia
  2. 2.Cytogenetics and Molecular Biology Laboratory, Department of ZoologyUniversity of KalyaniKalyaniIndia
  3. 3.Newcastle University Centre for CancerFaculty of Medical School Newcastle upon TyneUK

Personalised recommendations