Advertisement

Technological Advancement in Cancer Stem Cell Research

  • Tanu Sharma
  • Chandi C. Mandal
Chapter
  • 61 Downloads

Abstract

Cancer stem cells (CSCs) display a significant role in cancer research, evidenced from past decade studies. Although, with the passage of time, effective cancer therapy has been developed, still up to now, cancer possesses the second highest mortality worldwide. The only defined characteristic for every therapy failure is the presence of cells with self-renewable capacity known as cancer stem cells in the heterogeneous population of tumor. These CSCs provide a tumor resistance against various therapies like chemotherapy and radiotherapy. Thus, to prolong survival time period of cancer patients, it is prerequisite to eliminate CSC population. Thus, to develop novel effective therapeutics against primary tumors, isolation and characterization of CSCs will provide a novel insight to develop cancer therapeutics. Thus, various in vitro and in vivo approaches have been developed to isolate and target CSCs. In this chapter, we will discuss about how researchers have developed various powerful tools to characterize CSCs to develop better therapeutics to target CSCs and thus cancer and also how technology has sprung up to generate advanced preclinical models of human tumors.

Keywords:

Cancer stem cells (CSCs) Spheroids Organoids 

Notes

Acknowledgement

Conflict of interest: Authors have declared no conflict of interest for this book chapter.

References

  1. 1.
    Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291PubMedCrossRefGoogle Scholar
  2. 2.
    Nagle PW, Plukker JTM, Muijs CT, van Luijk P, Coppes RP (2018) Patient-derived tumor organoids for prediction of cancer treatment response. Semin Cancer Biol 53:258–264PubMedCrossRefGoogle Scholar
  3. 3.
    Podlaha O, Riester M, De S, Michor F (2012) Evolution of the cancer genome. Trends Genet 28(4):155–163PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M (2015) Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells 7(9):1185PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645PubMedCrossRefGoogle Scholar
  7. 7.
    Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317(5836):337PubMedCrossRefGoogle Scholar
  10. 10.
    Aiken C, Werbowetski-Ogilvie T (2013) Animal models of cancer stem cells: what are they really telling us? Curr Pathobiol Rep 1(2):91–99CrossRefGoogle Scholar
  11. 11.
    Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25(11):1315PubMedCrossRefGoogle Scholar
  12. 12.
    Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar N (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7(3):279–282PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sengupta A, Cancelas JA (2010) Cancer stem cells: a stride towards cancer cure? J Cell Physiol 225(1):7–14PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rycaj K, Tang DG (2015) Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res 75(19):4003–4011PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kwon CH, Zhao D, Chen J, Alcantara S, Li Y, Burns DK, Mason RP, Lee EY, Wu H, Parada LF (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68(9):3286–3294PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers HJS (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337(6095):730–735PubMedCrossRefGoogle Scholar
  18. 18.
    Driessens G, Beck B, Caauwe A, Simons BD, Blanpain CJN (2012) Defining the mode of tumour growth by clonal analysis. Nature 488(7412):527PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806PubMedCrossRefGoogle Scholar
  20. 20.
    Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337PubMedCrossRefGoogle Scholar
  21. 21.
    Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, Laino L, De Francesco F, Papaccio G (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27(1):13–24PubMedCrossRefGoogle Scholar
  22. 22.
    Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73PubMedCrossRefGoogle Scholar
  23. 23.
    Tomita H, Tanaka K, Tanaka T, Hara A (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7(10):11018–11032PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mele L, Liccardo D, Tirino V (2018) Evaluation and isolation of cancer stem cells using ALDH activity assay. Cancer stem cells. Springer, New York, pp 43–48Google Scholar
  25. 25.
    Hilton J (1984) Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 44(11):5156–5160PubMedGoogle Scholar
  26. 26.
    Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, Cimmino A, De Nigris F (2018) Sarcoma spheroids and organoids—promising tools in the era of personalized medicine. Int J Mol Sci 19(2):615PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74(9):2377–2384PubMedCrossRefGoogle Scholar
  28. 28.
    Bahmad HF, Cheaito K, Chalhoub RM, Hadadeh O, Monzer A, Ballout F, El-Hajj A, Mukherji D, Liu Y-N, Daoud G (2018) Sphere-formation assay: three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol 8:347PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gitschier H, Fang Y, Eglen RM (2017) Three-dimensional cell culture: a rapidly emerging technique for drug discovery. Drug Dicov 55Google Scholar
  30. 30.
    Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23(5):393–410PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao H, Yan C, Hu Y, Mu L, Huang K, Li Q, Li X, Tao D, Qin J (2019) Sphere-forming assay vs. organoid culture: determining long-term stemness and the chemoresistant capacity of primary colorectal cancer cells. Int J Oncol 54(3):893–904PubMedPubMedCentralGoogle Scholar
  32. 32.
    Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ma X-L, Sun Y-F, Wang B-L, Shen M-N, Zhou Y, Chen J-W, Hu B, Gong Z-J, Zhang X, Cao Y, Pan B-S, Zhou J, Fan J, Guo W, Yang X-R (2019) Sphere-forming culture enriches liver cancer stem cells and reveals stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer 19(1):760PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Franco SS, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A (2016) In vitro models of cancer stem cells and clinical applications. BMC Cancer 16(2):738CrossRefGoogle Scholar
  35. 35.
    Coles‐Takabe BL, Brain I, Purpura KA, Karpowicz P, Zandstra PW, Morshead CM, Van der Kooy D (2008) Don’t look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells 26(11):2938–2944PubMedCrossRefGoogle Scholar
  36. 36.
    Ferrón SR, Andreu-Agulló C, Mira H, Sánchez P, Marqués-Torrejón MÁ, Farinas I (2007) A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells. Nat Protoc 2(4):849PubMedCrossRefGoogle Scholar
  37. 37.
    Chojnacki A, Weiss S (2008) Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc 3(6):935PubMedCrossRefGoogle Scholar
  38. 38.
    Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2(5):333PubMedCrossRefGoogle Scholar
  39. 39.
    Stingl J (2009) Detection and analysis of mammary gland stem cells. J Pathol 217(2):229–241PubMedCrossRefGoogle Scholar
  40. 40.
    Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K (2018) Organoid technology and applications in cancer research. J Hematol Oncol 11(1):116PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920–926PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Seidlitz T, Merker SR, Rothe A, Zakrzewski F, von Neubeck C, Grützmann K, Sommer U, Schweitzer C, Schölch S, Uhlemann H (2019) Human gastric cancer modelling using organoids. Gut 68(2):207–217PubMedCrossRefGoogle Scholar
  43. 43.
    Schütte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D, Keil M, Yildiriman R, Jandrasits C, Borodina T, Amstislavskiy V (2017) Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun 8:14262PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838PubMedCrossRefGoogle Scholar
  45. 45.
    Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP (2015) Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A 112(43):13308–13311PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, Piscuoglio S, Wieland S, Ringnalda F, Schwank G (2018) Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 24(5):1363–1376PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang HC, Kuo C (2015) Personalizing pancreatic cancer organoids with hPSCs. Nat Med 21(11):1249PubMedCrossRefGoogle Scholar
  48. 48.
    Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338PubMedCrossRefGoogle Scholar
  49. 49.
    Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1–2):373–386.e10PubMedCrossRefGoogle Scholar
  50. 50.
    Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB (2018) Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173(2):515–528.e17PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Shenoy T, Boysen G, Wang M, Xu Q, Guo W, Koh F, Wang C, Zhang L, Wang Y, Gil V (2017) CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol 28(7):1495–1507PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Tanu Sharma
    • 1
  • Chandi C. Mandal
    • 1
  1. 1.Department of BiochemistryCentral University of RajasthanAjmerIndia

Personalised recommendations