Cancer Stem Cells and Tumour Aggressiveness

  • Gautham Chengizkhan
  • Natarajan Bhaskaran
  • R. Ileng Kumaran
  • Ilangovan RamachandranEmail author


Tumours are groups of cells, consisting of heterogeneous types of cells that exhibit abnormal cellular characteristics and behaviours. The molecular characteristics of tumour cells can be used to classify the tumour types. In a tumour, the complexity of the population of cell types involved and their diverse gene expression patterns, contribute significantly to tumour heterogeneity, growth, metastasis and aggressiveness. Cancer stem cells (CSCs) are a small population of cells in a tumour that are highly plastic in nature and possess self-renewing capacity. The CSCs can differentiate into different cell types, and play crucial roles in tumour initiation, growth and progression. CSCs drive metastasis, therapeutic resistance and recurrence of cancers, and thus act as the key regulators of tumour aggressiveness. The CSCs trigger the epithelial to mesenchymal transition (EMT) of cells in the tumour, which leads to increased invasiveness of these cells. These unique subpopulations of cells can communicate with their tumour microenvironment (TME) or niche, and stimulate their niche to secrete several intrinsic factors, which triggers neoangiogenesis to promote metastasis. The multipotent and tumour-initiating abilities of CSCs stimulate or alter various signalling networks to cause extravasation of primary cancer cells that result in cancer metastasis. Consequently, the CSCs promote tumour aggressiveness, which can lead to relapse of cancers after various treatments, and thus, pose critical problems in designing novel therapeutics to specifically target and eliminate CSCs. Therefore, CSCs and tumour aggressiveness still remain as one of the major challenges in curing cancer, despite recent advancements in therapeutic approaches to treat various cancers. Here, we discuss the key roles of CSCs in the regulation of EMT, metastasis, cancer metabolism and critical signalling pathways that influences tumour aggressiveness.


Cancer stem cells Self-renewal Tumour initiation Epithelial to mesenchymal transition Invasiveness Angiogenesis Metastasis Tumour aggressiveness 



We express our sincere appreciation to Dr. Yuvaraj Sambandam (Immune Monitoring Core, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA) for thoroughly reading this manuscript and providing critical suggestions.

Conflict of Interest: The authors declare no conflict of interest.


  1. 1.
    Saito Y, Desai RR, Muthuswamy SK (2018) Reinterpreting polarity and cancer: the changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 1869(2):103–116PubMedCrossRefGoogle Scholar
  2. 2.
    Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16(8):717–727PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    He J, Xiong L, Li Q, Lin L, Miao X, Yan S, Hong Z, Yang L, Wen Y, Deng X (2018) 3D modeling of cancer stem cell niche. Oncotarget 9(1):1326–1345PubMedCrossRefGoogle Scholar
  7. 7.
    Prager BC, Xie Q, Bao S, Rich JN (2019) Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24(1):41–53PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728(1–2):23–34PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wang G, Biswas AK, Ma W, Kandpal M, Coker C, Grandgenett PM, Hollingsworth MA, Jain R, Tanji K, Lomicronpez-Pintado S, Borczuk A, Hebert D, Jenkitkasemwong S, Hojyo S, Davuluri RV, Knutson MD, Fukada T, Acharyya S (2018) Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat Med 24(6):770–781PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G (2019) Meeting the challenge of targeting cancer stem cells. Front Cell Dev Biol 7:16PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, Huntly B, Herrmann H, Soulier J, Roesch A, Schuurhuis GJ, Wohrer S, Arock M, Zuber J, Cerny-Reiterer S, Johnsen HE, Andreeff M, Eaves C (2012) Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 12(11):767–775PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Crawford Y, Ferrara N (2009) Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends Pharmacol Sci 30(12):624–630PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Owen JL, Mohamadzadeh M (2013) Macrophages and chemokines as mediators of angiogenesis. Front Physiol 4:159PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, Sperduti I, Di Franco S, Meraviglia S, Lo Presti E, Dieli F, Caputo V, Militello G, Vieni S, Stassi G, Todaro M (2017) IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition. Cancer Res 77(12):3268–3279PubMedCrossRefGoogle Scholar
  16. 16.
    Lee Y, Shin JH, Longmire M, Wang H, Kohrt HE, Chang HY, Sunwoo JB (2016) CD44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res 22(14):3571–3581PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wu Y, Chen M, Wu P, Chen C, Xu ZP, Gu W (2017) Increased PD-L1 expression in breast and colon cancer stem cells. Clin Exp Pharmacol Physiol 44(5):602–604PubMedCrossRefGoogle Scholar
  18. 18.
    Jachetti E, Caputo S, Mazzoleni S, Brambillasca CS, Parigi SM, Grioni M, Piras IS, Restuccia U, Calcinotto A, Freschi M, Bachi A, Galli R, Bellone M (2015) Tenascin-C protects cancer stem-like cells from immune surveillance by arresting T-cell activation. Cancer Res 75(10):2095–2108PubMedCrossRefGoogle Scholar
  19. 19.
    Yao HJ, Zhang YG, Sun L, Liu Y (2014) The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials 35(33):9208–9223PubMedCrossRefGoogle Scholar
  20. 20.
    Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24(18):1967–2000PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036PubMedPubMedCentralGoogle Scholar
  23. 23.
    Demaria O, Cornen S, Daeron M, Morel Y, Medzhitov R, Vivier E (2019) Publisher correction: harnessing innate immunity in cancer therapy. Nature 576(7785):E3PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51(1):1–28PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, Kharaziha P (2019) Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol 234(10):16885–16903PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Paulis YW, Huijbers EJ, van der Schaft DW, Soetekouw PM, Pauwels P, Tjan-Heijnen VC, Griffioen AW (2015) CD44 enhances tumor aggressiveness by promoting tumor cell plasticity. Oncotarget 6(23):19634–19646PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Glumac PM, LeBeau AM (2018) The role of CD133 in cancer: a concise review. Clin Transl Med 7(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yu KR, Yang SR, Jung JW, Kim H, Ko K, Han DW, Park SB, Choi SW, Kang SK, Scholer H, Kang KS (2012) CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. Stem Cells 30(5):876–887PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Clark DW, Palle K (2016) Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Ann Transl Med 4(24):518PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Saikolappan S, Kumar B, Shishodia G, Koul S, Koul HK (2019) Reactive oxygen species and cancer: a complex interaction. Cancer Lett 452:132–143PubMedCrossRefGoogle Scholar
  32. 32.
    McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168(4):613–628CrossRefGoogle Scholar
  33. 33.
    Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89PubMedCrossRefGoogle Scholar
  34. 34.
    Steinbichler TB, Dudas J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II (2019) Therapy resistance mediated by exosomes. Mol Cancer 18(1):58PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2017) Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168(4):692–706PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Tsang DS, Patel S (2019) Proton beam therapy for cancer. CMAJ 191(24):E664–e666PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Murgai M, Giles A, Kaplan R (2015) Physiological, tumor, and metastatic niches: opportunities and challenges for targeting the tumor microenvironment. Crit Rev Oncog 20(3–4):301–314PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH (2012) The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 1826(2):272–296PubMedPubMedCentralGoogle Scholar
  39. 39.
    Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS (2013) Cancer stem cells and their role in metastasis. Pharmacol Ther 138(2):285–293PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25(1):20PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Desai A, Yan Y, Gerson SL (2019) Concise reviews: Cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl Med 8(1):75–81PubMedCrossRefGoogle Scholar
  44. 44.
    Folkerd EJ, Dowsett M (2010) Influence of sex hormones on cancer progression. J Clin Oncol 28(26):4038–4044PubMedCrossRefGoogle Scholar
  45. 45.
    Aaronson SA (1991) Growth factors and cancer. Science 254(5035):1146–1153PubMedCrossRefGoogle Scholar
  46. 46.
    Shay G, Lynch CC, Fingleton B (2015) Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 44–46:200–206PubMedCrossRefGoogle Scholar
  47. 47.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  48. 48.
    Lasorella A, Benezra R, Iavarone A (2014) The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 14(2):77–91PubMedCrossRefGoogle Scholar
  49. 49.
    Robichaud N, Sonenberg N, Ruggero D, Schneider RJ (2019) Translational control in cancer. Cold Spring Harb Perspect Biol 11(7):a032896PubMedCrossRefGoogle Scholar
  50. 50.
    Mitra A, Mishra L, Li S (2015) EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 6(13):10697–10711PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel) 3(1):716–729CrossRefGoogle Scholar
  53. 53.
    Du B, Shim JS (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21(7):E965PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    El-Kenawi A, Hanggi K, Ruffell B (2019) The immune microenvironment and cancer metastasis. Cold Spring Harb Perspect Med 10:a037424CrossRefGoogle Scholar
  55. 55.
    Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR (2019) Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    De Francesco EM, Sotgia F, Lisanti MP (2018) Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 475(9):1611–1634PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chae YC, Kim JH (2018) Cancer stem cell metabolism: target for cancer therapy. BMB Rep 51(7):319–326PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nusse R (2012) Wnt signaling. Cold Spring Harb Perspect Biol 4(5):a011163PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ramachandran I, Thavathiru E, Ramalingam S, Natarajan G, Mills WK, Benbrook DM, Zuna R, Lightfoot S, Reis A, Anant S, Queimado L (2012) Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene 31(22):2725–2737Google Scholar
  61. 61.
    Ramachandran I, Ganapathy V, Gillies E, Fonseca I, Sureban SM, Houchen CW, Reis A, Queimado L (2014) Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis 5(5):e1246Google Scholar
  62. 62.
    Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Shukla S, Meeran SM (2014) Epigenetics of cancer stem cells: pathways and therapeutics. Biochim Biophys Acta 1840(12):3494–3502PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, Kaginelli SB, Kuppanna G, Kallappa CG, Basalingappa KM (2018) Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig 5:5PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Katoh Y, Katoh M (2009) Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med 9(7):873–886PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Gautham Chengizkhan
    • 1
  • Natarajan Bhaskaran
    • 2
  • R. Ileng Kumaran
    • 3
  • Ilangovan Ramachandran
    • 1
    • 4
    Email author
  1. 1.Department of Endocrinology, Dr. ALM PG Institute of Basic Medical SciencesUniversity of Madras, Taramani CampusChennaiIndia
  2. 2.Department of Biological Sciences, School of Dental MedicineCase Western Reserve UniversityClevelandUSA
  3. 3.Biology DepartmentFarmingdale State CollegeFarmingdaleUSA
  4. 4.Department of Obstetrics and Gynecology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations