Advertisement

Therapeutic Implication of Cancer Stem Cells

  • Sudeep BoseEmail author
  • Sartaj Khurana
  • Shrey Ashley Philip
Chapter
  • 65 Downloads

Abstract

Most of the conventional cancer treatments have limited selectivity, are temporarily effective, and have adverse side effects. The potential of cancer stem cell (CSC)-based therapies has recently attracted much attention to override the detrimental impact of conventional therapies. Here we have highlighted potential strategies including identification of cancer stem cell biomarkers, interfering with circuitry network associated with drug resistance, sensitization of CSC to chemotherapy, and radiation therapy through protein targeting. CSCs display differential metabolic activity, specific signaling pathway activity in tumor initiation, metastasis, and drug resistance. Thus identification of CSC-specific markers distinct from the total cancer cell population is essential. Given the fact that the stem cell is one of the key components of organogenesis and maintenance of homeostasis throughout life, improvement of treatment modalities based on CSC therapies holds wish for better overall survival and better quality of life of cancer sufferers, specifically for patients with metastatic disorder. Therefore, in this book chapter, we have mainly discussed aberrant regulation of gene expression and some signaling pathways in CSCs and implication of CSC surface markers for designing new therapies for better clinical outcome.

Keywords

Cancer stem cells Biomarkers Therapeutics Stemness CSC signaling Targets 

References

  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  2. 2.
    Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kangsamaksin T, Park HJ, Trempus CS, Morris RJ (2007) A perspective on murine keratinocyte stem cells as targets of chemically induced skin cancer. Mol Carcinog 46:579–584PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988PubMedCrossRefGoogle Scholar
  5. 5.
    Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R (2009) Colon cancer stem cells. J Mol Med 87:1097PubMedCrossRefGoogle Scholar
  6. 6.
    Minteer D, Marra KG, Rubin JP (2012) Adipose-derived mesenchymal stem cells: biology and potential applications. Mesenchymal stem cells-basics and clinical application I. Springer, BerlinGoogle Scholar
  7. 7.
    Yeung TM, Chia LA, Kosinski CM, Kuo CJ (2011) Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci 68:2513–2523PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261PubMedCrossRefGoogle Scholar
  9. 9.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  10. 10.
    Guo Y, Lübbert M, Engelhardt M (2003) CD34− hematopoietic stem cells: current concepts and controversies. Stem Cells 21:15–20PubMedCrossRefGoogle Scholar
  11. 11.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768PubMedCrossRefGoogle Scholar
  12. 12.
    Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, Van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086PubMedCrossRefGoogle Scholar
  13. 13.
    Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Muñoz P (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524PubMedCrossRefGoogle Scholar
  14. 14.
    Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M, Herrmann I, Ristimäki A, Virkkunen P, Tarkkanen M (2008) Tissue-specific promoters active in CD44+ CD24−/low breast cancer cells. Cancer Res 68:5533–5539PubMedCrossRefGoogle Scholar
  15. 15.
    Dierks C, Beigi R, Guo G-R, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on hedgehog pathway activation. Cancer Cell 14:238–249PubMedCrossRefGoogle Scholar
  16. 16.
    Winquist RJ, Boucher DM, Wood M, Furey BF (2009) Targeting cancer stem cells for more effective therapies: taking out cancer’s locomotive engine. Biochem Pharmacol 78:326–334PubMedCrossRefGoogle Scholar
  17. 17.
    Maugeri-Saccà M, Zeuner A, De Maria R (2011) Therapeutic targeting of cancer stem cells. Front Oncol 1:10PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Merchant AA, Matsui W (2010) Targeting Hedgehog—a cancer stem cell pathway. Clin Cancer Res 16:3130–3140PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Muller J-M, Chevrier L, Cochaud S, Meunier A-C, Chadeneau C (2007) Hedgehog, Notch and Wnt developmental pathways as targets for anti-cancer drugs. Drug Discov Today Dis Mech 4:285–291CrossRefGoogle Scholar
  20. 20.
    Liu J, Kopeckova P, Bühler P, Wolf P, Pan H, Bauer H, Elsässer-Beile U, Kopecek J (2009) Biorecognition and subcellular trafficking of HPMA copolymer− anti-PSMA antibody conjugates by prostate Cancer cells. Mol Pharm 6:959–970PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wang K-H, Kao A-P, Chang C-C, Lee J-N, Hou M-F, Long C-Y, Chen H-S, Tsai E-M (2010) Increasing CD44+/CD24-tumor stem cells, and upregulation of COX-2 and HDAC6, as major functions of HER2 in breast tumorigenesis. Mol Cancer 9:288PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rappa G, Fodstad O, Lorico A (2008) The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDH hi CD44+ human breast cancer cells. Breast Cancer Res Treat 133:75–87PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Patil Y, Sadhukha T, Ma L, Panyam J (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Saeki T, Nomizu T, Toi M, Ito Y, Noguchi S, Kobayashi T, Asaga T, Minami H, Yamamoto N, Aogi K (2007) Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J Clin Oncol 25:411–417PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Konopleva M, Tabe Y, Zeng Z, Andreeff M (2009) Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 12:103–113PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kaboli PJ, Rahmat A, Ismail P, Ling K-H (2015) MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 97:104–121PubMedCrossRefGoogle Scholar
  29. 29.
    Garofalo M, Croce CM (2015) Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev 81:53–61PubMedCrossRefGoogle Scholar
  30. 30.
    Ween M, Armstrong M, Oehler M, Ricciardelli C (2015) The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 96:220–256PubMedCrossRefGoogle Scholar
  31. 31.
    Rauf A, Imran M, Orhan IE, Bawazeer S (2018) Health perspectives of a bioactive compound curcumin: a review. Trends Food Sci Technol 74:33–45CrossRefGoogle Scholar
  32. 32.
    Chandrasekaran S, Marshall JR, Messing JA, Hsu J-W, King MR (2014) TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS One 9:e111487PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Roberti A, Sala DL, Cinti C (2006) Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: current views and new therapeutic prospective. J Cell Physiol 207:571–581PubMedCrossRefGoogle Scholar
  34. 34.
    Suresh R, Ali S, Ahmad A, Philip PA, Sarkar FH (2016) The role of cancer stem cells in recurrent and drug-resistant lung cancer. Adv Exp Med Biol 890:57–74PubMedCrossRefGoogle Scholar
  35. 35.
    Ning X, Shu J, Du Y, Ben Q, Li Z (2013) Therapeutic strategies targeting cancer stem cells. Cancer Biol Ther 14:295–303PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pont LMB, Spoor JK, Venkatesan S, Swagemakers S, Kloezeman JJ, Dirven CM, van der Spek PJ, Lamfers ML, Leenstra S (2014) The Bcl-2 inhibitor Obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 5:445CrossRefGoogle Scholar
  37. 37.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  38. 38.
    Dick JE (2005) Acute myeloid leukemia stem cells. Ann N Y Acad Sci 1044:1–5PubMedCrossRefGoogle Scholar
  39. 39.
    Warner JK, Wang JC, Hope KJ, Jin L, Dick JE (2004) Concepts of human leukemic development. Oncogene 23:7164–7177PubMedCrossRefGoogle Scholar
  40. 40.
    Johnsen HE, Kjeldsen MK, Urup T, Fogd K, Pilgaard L, Boegsted M, Nyegaard M, Christiansen I, Bukh A, Dybkaer K (2009) Cancer stem cells and the cellular hierarchy in haematological malignancies. Eur J Cancer 45(Suppl 1):194–201PubMedCrossRefGoogle Scholar
  41. 41.
    Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89:3104–3112PubMedCrossRefGoogle Scholar
  42. 42.
    Blair A, Sutherland HJ (2000) Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 28:660–671PubMedCrossRefGoogle Scholar
  43. 43.
    Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M (2008) Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med 14:450–460PubMedCrossRefGoogle Scholar
  44. 44.
    Prud’Homme GJ (2012) Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des 18:2838–2849PubMedCrossRefGoogle Scholar
  45. 45.
    Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, Wu XC, Friedman C, Harlan L, Warren J, Anderson RN, PICKLE LW (2005) Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 97:1407–1427PubMedCrossRefGoogle Scholar
  46. 46.
    Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26:2806–2812PubMedCrossRefGoogle Scholar
  47. 47.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefGoogle Scholar
  48. 48.
    Eramo A, Haas TL, De Maria R (2010) Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene 29:4625–4635PubMedCrossRefGoogle Scholar
  49. 49.
    Wu X, Chen H, Wang X (2012) Can lung cancer stem cells be targeted for therapies? Cancer Treat Rev 38:580–588PubMedCrossRefGoogle Scholar
  50. 50.
    de Beça FF et al (2013) Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol 66(3):187–191PubMedCrossRefGoogle Scholar
  51. 51.
    Yasuda H et al (2009) Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep 22(4):709–717PubMedGoogle Scholar
  52. 52.
    Brescia P et al (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869PubMedCrossRefGoogle Scholar
  53. 53.
    Prince M et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci 104(3):973–978PubMedCrossRefGoogle Scholar
  54. 54.
    Simeone DM (2008) Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res 14(18):5646–5648PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sudeep Bose
    • 1
    • 2
    Email author
  • Sartaj Khurana
    • 1
    • 2
  • Shrey Ashley Philip
    • 1
  1. 1.Amity Institute of BiotechnologyAmity University Uttar-PradeshNoidaIndia
  2. 2.Amity Institute of Molecular Medicine and Stem Cell ResearchAmity University Uttar PradeshNoidaIndia

Personalised recommendations