Advertisement

The Effect of Time on Crazing and Fracture

  • Hans-Henning KauschEmail author
  • Goerg H. Michler
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 187)

Abstract

By way of introduction to the subject of this Volume1 this contribution reviews the effects of the most prominent properties of macromolecules (their enormous length, strong elastic anisotropy in axial and lateral directions and high segmental mobility) and of their characteristic dimensions on the elementary molecular deformation mechanisms of thermoplastic polymers. The competition between these mechanisms has a determinant influence on the different failure modes (crazing, creep, yielding and flow, fracture through crack propagation). The main part is devoted to an analysis of failure in creep. The micro-morphological approach is further developed and compared to criteria derived from visco-elastic theory with representative equations. Small angle X-ray analysis of the formation of fibrillar structures in amorphous polymers SAN and PC identifies three distinct regimes associated to fluid-like behaviour and disentanglement by forced reptation at low and moderate stresses (or high temperatures) and chain-scission dominated craze initiation (at low temperatures and high stresses), respectively. In semi-crystalline polymers similar differences are found: homogeneous creep at high stresses mostly involving the plastic deformation and break-up of crystal lamellae as opposed to the formation of craze-like structures due to the disentanglement of chains at low stresses. This review focuses on the important dual role of molecular mobility, to be at the origin of time-dependent properties of polymer materials, especially of their toughness, and to influence without exception all damage mechanisms which limit the strength and durability of polymer components.

Footnotes
  1. 1.

    The term This Volume refers to the Special Double Volume “Intrinsic Molecular Mobility and Toughness of Polymers” of the Advances in Polymer Science, Vol. 187 and 188 (2005)

Crazing Creep Molecular deformation mechanisms Disentanglement Time-dependent strength Toughness 

Abbreviations

C

characteristic ratio

DK

equilibrium diameter of a molecular coil

Ea

activation energy

E

Young's modulus

E′′

mechanical loss modulus

E

mechanical storage modulus

Do

fibril spacing (long period in scattering experiment)

G′′

mechanical loss shear modulus

Go

rubber elastic shear modulus

GId

dynamic energy release rate

J′′

mechanical loss compliance

K,Kc

stress intensity factor

KIc

critical stress intensity factor

KId

dynamic stress intensity factor

Me

entanglement molecular weight

Mw

weight average molecular weight

NA

Avogadro's number

R

molar gas constant

T

absolute temperature

Tg

glass-rubber transition temperature

Tm

melt temperature

U

activation energy

V

activation volume

a

crack length

h

Plank constant

k

Boltzman constant

mol

mole

ν

Poisson's ratio

p

internal pressure

rg

radius of gyration

smax

maximum of scattering vector

tf, tb

time to failure

th

healing time

tanδ

ratio of loss to storage modulus

εa

linear amorphous strain

εt

linear total strain

ϕ

torsion angle about a chemical bond

γ

surface tension

Γ

fibrillation energy

νe

entanglement density

ρ

density

σo

tensile stress

2D

two-dimensional

BPA-PC

bisphenol A polycarbonate

CT

compact tension specimen

DCB

double cantilever beam specimen

DENT

double edge notch tensile specimen

DSC

differential scanning calorimetry

ESIS

European Structural Integrity Society

FNCT

full notch creep test

HDPE

high density polyethylene

iPP

isotactic polypropylene

LEFM

linear elastic fracture mechanics

MDPE

medium density polyethylene

NMR

nuclear magnetic resonance

PC

polycarbonate

PE

polyethylene

PVC

polyvinylchloride

PET

poly(ethylene tere-phthalate)

PMMA

poly(methyl methacrylate)

POM

polyoxymethylene

PS

polystyrene

SAN

styrene acrylonitrile

SCG

slow crack growth

SEN

single edge notch

UHMWPE

ultra high molecular weight polyethylene

U-PVC

unplasticized polyvinylchloride

WLF

Willams, Landel, Ferry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge fruitful discussions with M. Fischer, St. Antoni, B. Möginger, Rheinbach, A. Pavan, Milano, C.J.G. Plummer, Lausanne, and A. Rodrigez, Stuttgart.

References

  1. 1.
    Michler GH (1992) Kunststoff-Mikromechanik. Carl Hanser, Munich Google Scholar
  2. 2.
    Materials Science and Technology: A Comprehensive Treatment (1993) Cahn RW, Haasen P, Kramer EJ (eds) Structure and Properties of Polymers, Thomas EL, vol-Ed, vol 12. Wiley, New York Google Scholar
  3. 3.
    Kausch H-H, Heymans N, Plummer CJ, Decroly P (2001) Matériaux Polymères: Propriétés Mécaniques et Physiques, Principes de Mise en Oeuvre. Presses Polytechniques et Universitaires Romandes, Lausanne Google Scholar
  4. 4.
    Lousteaux B (2002) PhD Thesis, University Pierre and Marie Curie, Paris Google Scholar
  5. 5.
    Flory P (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca Google Scholar
  6. 6.
    Dettenmaier M (1986) personal communication based on the experiments published in Macromolecules 19:773 Google Scholar
  7. 7.
    Suter U, p 63 in [3] Google Scholar
  8. 8.
    Gentile FT, Suter UW Amorphous polymer microstructure, Chap 2 in [2] Google Scholar
  9. 9.
    Monnerie L, Lauprêtre F, Halary JL (2005) Investigation of Solid-State Transitions in Linear and Crosslinked Amorphous Polymers. Adv Polym Sci 187:35 Google Scholar
  10. 10.
    Monnerie L, Halary JL, Kausch H-H (2005) Deformation, Yield and Fracture of Amorphous Polymers: Relation to the Secondary Transitions. Adv Polym Sci 187:215 Google Scholar
  11. 11.
    Fischer EW, Dettenmaier M (1978) J Noncryst Solids 31:11 CrossRefGoogle Scholar
  12. 12.
    Michler GH (1992) p 216 in [1] Google Scholar
  13. 13.
    Chan C-M, Li L (2005) in volume 188 Google Scholar
  14. 14.
    Grein C (2005) in volume 188 Google Scholar
  15. 15.
    Brown HR (1991) Macromolecules 24:2752 Google Scholar
  16. 16.
    Kausch H-H (1987) Polymer Fracture, 2nd ed. Springer, Heidelberg Berlin New York Google Scholar
  17. 17.
    Jud K, Kausch H-H, Williams JG (1981) J Mater Sci 16:204 CrossRefGoogle Scholar
  18. 18.
    Gensler R (1998) Thesis No 1863, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Google Scholar
  19. 19.
    Kausch H-H, Gensler R, Grein C, Plummer CJG, Scaramuzzino P (1999) J Macromol Sci B38:803 CrossRefGoogle Scholar
  20. 20.
    Kausch H-H, Langbein D (1973) J Polym Sci A2 11:1201 CrossRefGoogle Scholar
  21. 21.
    Michler GH, Godehardt R (2000) Cryst Res Technol 35:863 CrossRefGoogle Scholar
  22. 22.
    Kawai H, Hashimoto T, Miyoshi K, Uno H, Fujimura MJ (1980) Macromol Sci Polym Phys 17:427 Google Scholar
  23. 23.
    Adhikar R, Michler GH, Goerlitz S, Knoll K (2004) J Appl Polym Sci 92:1208 Google Scholar
  24. 24.
    Galeski A (2004) 11. Int Conf Polymeric Materials 2004, Halle, p C06 Google Scholar
  25. 25.
    Williams JG (1984) Fracture mechanics of Polymers. Ellis Horwood, Chichester Google Scholar
  26. 26.
    Grellmann W, Seidler S (2001) Deformation and fracture behaviour of polymers. Springer, Berlin Heidelberg New York Google Scholar
  27. 27.
    Williams JG, Moore DR, Pavan A (2001) Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites. Elsevier, Amsterdam Google Scholar
  28. 28.
    Knauss WG (1970) Int J Fracture 6:7 Google Scholar
  29. 29.
    Bradley W, Cantwell WJ, Kausch H-H (1998) Mech Time-Depend Mat 1:241 Google Scholar
  30. 30.
    Stalder B cited after [16], p 237 Google Scholar
  31. 31.
    Grellmann W, Seidler S, Hesse W (2001) p 71 in [26] Google Scholar
  32. 32.
    Greig JM, Leevers PS, Yayla P (1992) Eng Fract Mech 42:663 Google Scholar
  33. 33.
    Chan MKV, Williams JG (1983) Polymer 24:234 CrossRefGoogle Scholar
  34. 34.
    Takahashi K, Arakawa K (1987) Exp Mech 27:195 Google Scholar
  35. 35.
    Ferrer JB, Fond C, Arakawa K, Takahashi K, Béguelin P, Kausch H-H (1997) Int J Fracture 87:L77 Google Scholar
  36. 36.
    Harward RN (1973) The Physics of Glassy Polymers. Appl Sci Publ, London Google Scholar
  37. 37.
    Ferry DJ (1960) Viscoelastic properties of polymers. Wiley, New York Google Scholar
  38. 38.
    Crist B (1993) Plastic deformation of polymers, Chap 10 in [2] Google Scholar
  39. 39.
    Ward IM, Hadley DW (1993) Mechanical properties of solid polymers. Wiley, Chichester Google Scholar
  40. 40.
    Myasnikova LP, Marikhin VA, Ivan'kova EM, Yakushev PN (1999) J Macromol Sci Phys 38B:859 Google Scholar
  41. 41.
    Eyring H (1936) J Chem Phys 4:283 Google Scholar
  42. 42.
    Castiglione C, Verzanini D, Pavan A (2004) Plastic Pipes XII, Session 10b Google Scholar
  43. 43.
    Berger L, Kausch H-H (2003) Polymer 44:5877 Google Scholar
  44. 44.
    Wilding MA, Ward IM (1978) Polymer 19:969 CrossRefGoogle Scholar
  45. 45.
    Plummer CJG (2004) Adv Polymer Sci 169:75 Google Scholar
  46. 46.
    Damen J, Schramm D, Anderson K (2004) Plastic Pipes XII, Session 10b Google Scholar
  47. 47.
    da Andrade ENC (1910) Proc Royal Soc London 84:1 Google Scholar
  48. 48.
    Findley WN (1987) Polym Eng Sci 27:582 CrossRefGoogle Scholar
  49. 49.
    Schapery RA (1997) Mech Time-Depend Mat 1:209 Google Scholar
  50. 50.
    Gregory A, Vogel D, Béguelin PH, Gensler R, Kausch H-H (1999) Mech Time-Depend Mat 3:71 Google Scholar
  51. 51.
    Pilz G, Lang RW (2001) Proceedings of Plastics Pipes XI, p 903 Google Scholar
  52. 52.
    Niklas H, Kausch von Schmeling HH (1963) Kunststoffe 53:886 Google Scholar
  53. 53.
    Janson LE, Bergstrom G, Backman M, Blomster T, Plastic Pipes XII, Session 10b Google Scholar
  54. 54.
    Starke JU, Schulze G, Michler GH (1997) Acta Polymer 48:92 CrossRefGoogle Scholar
  55. 55.
    Kambour RP (1968) Appl Polym Symp 7:215 Google Scholar
  56. 56.
    Rabinowitz S, Beardmore P (1969) CRC Crit Rev 1:1 Google Scholar
  57. 57.
    Kausch H-H (ed) (1983) Crazing in Polymers Advances in Polymer Science, 52=53. Springer, Berlin Heidelberg New York Google Scholar
  58. 58.
    Kausch H-H (ed) (1990) Crazing in Polymers, vol II. Advances in Polymer Science, 91=92. Springer, Berlin Heidelberg New York Google Scholar
  59. 59.
    Plummer CJG (1997) Curr Trend Polym Sci 2:125 Google Scholar
  60. 60.
    Paredes E, Fischer EW (1979) Makromol Chem 180:2707 CrossRefGoogle Scholar
  61. 61.
    Kramer EJ (1983) p 1 in [57] Google Scholar
  62. 62.
    Michler GH, Section B 1.4, p 193 in [26] Google Scholar
  63. 63.
    Dettenmaier M (1983) p 57 in [57] Google Scholar
  64. 64.
    Estevez R, van der Giessen E (2005) Adv Polym Sci 188:195 Google Scholar
  65. 65.
    Altstädt V (2005) Adv Polym Sci 188:105 Google Scholar
  66. 66.
    Chateauminois A, Baietto-Dubourg MC (2005) Adv Polym Sci 188:153 Google Scholar
  67. 67.
    Scaramuzzino P (1998) Thesis No 1818, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Google Scholar
  68. 68.
    Monnerie L, Halary JL, Kausch H-H (2005) Deformation, Yield and Fracture of Amorphous Polymers: Relation to the Secondary Transitions, Sect 2.3 of [10]. Adv Polym Sci 187:215 Google Scholar
  69. 69.
    Brown N, Lu X (1995) Polymer 36:543 Google Scholar
  70. 70.
    Kausch H-H (1987) p 347 in [16] Google Scholar
  71. 71.
    Schapery RA (1990) J Mech Phys Solids 38:215 Google Scholar
  72. 72.
    Park SW, Kim YR, Schapery RA (1996) Mech Mater 24:241 CrossRefGoogle Scholar
  73. 73.
    Rodrigez A, Eyerer P (2005) 10. Tagung Deformation und Bruchverhalten von Kunststoffen, Merseburg/Germany, June 15–17 Google Scholar
  74. 74.
    Strobl G (2005) Symposium “Deformation Mechanisms in Polymers”, Halle/Germany, May 19–20 Google Scholar

Authors and Affiliations

  1. 1.Institut des Matériaux, EPFL-EcublensLausanneSwitzerland
  2. 2.Institut für Werkstoffwissenschaft, FB IngenieurwissenschaftenMartin-Luther-Universität Halle-WittenbergHalle/S.Germany

Personalised recommendations