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Abstract. In this paper, we address an optimization problem that arises
in context of cache placement in sensor networks. In particular, we con-
sider the cache placement problem where the goal is to determine a set
of nodes in the network to cache/store the given data item, such that the
overall communication cost incurred in accessing the item is minimized,
under the constraint that the total communication cost in updating the
selected caches is less than a given constant. In our network model, there
is a single server (containing the original copy of the data item) and mul-
tiple client nodes (that wish to access the data item). For various settings
of the problem, we design optimal, near-optimal, heuristic-based, and dis-
tributed algorithms, and evaluate their performance through simulations
on randomly generated sensor networks.

1 Introduction

Advances in embedded processing and wireless networking have made possible
creation of sensor networks [1, 9]. A sensor network consists of sensor nodes
with short-range radios and limited on-board processing capability, forming a
multi-hop network of irregular topology. Sensor nodes must be powered by small
batteries, making energy efficiency a critical design goal. There has been a sig-
nificant interest in designing algorithms, applications, and network protocols
to reduce energy usage of sensors. Examples include energy-aware routing [13],
energy-efficient information processing [8, 9], and energy-optimal topology con-
struction [21]. In this article, we focus on designing techniques to conserve energy
in the network by caching data items at selected sensor nodes in a sensor net-
work. The techniques developed in this paper are orthogonal to some of the other
mentioned approaches, and can be used in combination with them to conserve
energy.

Existing sensor networks assume that the sensors are preprogrammed and
send data to a sink node where the data is aggregated and stored for offline query-
ing and analysis. Thus, sensor networks provide a simple sample-and-gather ser-
vice, possibly with some in-network processing to minimize communication cost
and energy consumption. However, this view of sensor network architecture is
quite limited. With the rise in embedded processing technology, sensor networks
are set to become a more general-purpose, heterogeneous, distributed databases
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that generate and process time-varying data. As energy and storage limitations
will always remain an issue – as much of it comes from pure physical limitations
– new techniques for efficient data handling, storage, and dissemination must be
developed. In this article, we take a general view of the sensor network where
a subset of sensor nodes (called servers) generate data and another subset of
nodes (called clients) consume this data. The data generation and consumption
may not be synchronous with each other, and hence, the overall communication
cost can be optimized by caching generated data at appropriately selected inter-
mediate nodes. In particular, the data-centric sensor network applications which
require efficient data dissemination [4, 6] will benefit from effective data caching
strategies.

In our model of the sensor network, there is a single data item at a given
server node, and many client nodes. (See Section 6 for a discussion on multiple
data items and servers.) The server is essentially the data item producer and
maintains the original copy of the item. All the nodes in the network cooperate
to reduce the overall communication cost of accessing the data via a caching
mechanism, wherein any node in the network can serve as a cache. A natural
objective in the above context could be to select cache nodes such that the sum
of the overall access and update cost is minimized. However, such an objective
does not guarantee anything about the general distribution of enery usage across
the sensor network. In particular, the updates always originate from the server
node, and hence, the server node and the surrounding nodes bear most of the
communication cost incurred in updating. Hence, there is a need to constrain
the total update cost incurred in the network, to prolong the lifetime of the
server node and the nodes around it – and hence, possibly of the sensor network.
Thus, in this article, we address the cache placement problem to minimize the
total access cost under an update cost constraint. More formally, we address the
problem of selecting nodes in the network to serve as caches in order to minimize
the total access cost (communication cost incurred in accessing the data item by
all the clients), under the constraint that the total update cost (communication
cost incurred in updating the cache nodes using an optimal Steiner tree over
the cache nodes and the server) is less than a given constant. Note that since
we are considering only a single data item, we do not need to consider memory
constraints of a node.

Paper Outline. We start with formulating the problem addressed in this arti-
cle and a discussion on related work in Section 2. For the cache placement prob-
lem under an update cost constraint, we consider a tree topology and a general
graph topology of the sensor network. For the tree topology, we design an opti-
mal dynamic programming algorithm in Section 3. The optimal algorithm for the
tree topology can be applied to the general graph topology by extracting an ap-
propriate tree from the given network graph. For the general graph topology, we
consider a simplified multiple-unicast update cost model, and design a constant-
factor approximation algorithm in Section 4.1. In Section 4.2, we present an ef-
ficient heuristic for the general cache placement problem under an update cost
constraint, i.e., for a general update cost model in general graph topology. In Sec-
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tion 4.3, we present an efficient distributed implementation. Finally, we present
simulation results in Section 5, and give concluding remarks in Section 6.

2 Problem Formulation and Related Work

In this section, we formulate the problem addressed in this article. We start with
describing the sensor network model.

Sensor Network Model. A sensor network consists of a large number of sen-
sor nodes distributed randomly in a geographical region. Each sensor node has a
unique identifier (ID). Each sensor node has a radio interface and can communi-
cate directly with some of the sensor nodes around it. For brevity, we sometimes
just use node to refer to a sensor node. The sensor network can be modeled as
an undirected weighted graph G = (V, E), where V is the set of nodes, and E
is the set of edges formed by pairs of nodes that can directly communicate with
each other. The communication distance between any two nodes i and j is the
number of hops dij between the two nodes. The network has a data item, which
is stored at a unique node called a server, and is updated at a certain update
frequency. Each sensor node could be a client node. A client node i requests the
data item with an access frequency ai. The cost of accessing a data item (access
cost) by a node i from a node j (the server or a cache) is aidij , where dij is the
number of hops from node i to node j.

Problem. Informally, our article addresses the following cache placement prob-
lem in sensor networks. Select a set of nodes to store copies of the data item such
that the total access cost is minimized under a given update cost constraint. The
total access cost is the sum of all individual access costs over all clients for ac-
cessing the data item from the nearest node (either a cache or the server) having
a copy of the data item. The update cost incurred in updating a set of caches
M is modeled as the cost of the optimal Steiner tree [10] spanning the server
and the set of caches. This problem is obviously NP-hard, as even the Steiner
tree problem is known to be NP-hard [3]. In this article, we look at the above
problem in various stages – a tree topology, a graph topology with a simplified
update cost model, a graph topology with the general update cost model – and
present optimal, approximation, and heuristic-based algorithms respectively.

More formally, given a sensor network graph G = (V, E), a server r with the
data item, and an update cost ∆, select a set of cache nodes M ⊆ V (r ∈ M)
to store the data item such that the total access cost

τ(G, M) =
∑

i∈V

ai × minj∈Mdij

is minimum, under the constraint that the total update cost µ(M) is less than
a given constant ∆, where µ(M) is the cost of the minimum Steiner tree over
the set of nodes M . Note that in the above definition all network nodes are
considered as potential clients. If some node i is not a client, the corresponding
ai would be zero.
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Related Work. The general problem of determining optimal cache placements
in an arbitrary network topology has similarity to two problems widely studied
in graph theory viz., facility location problem and the k-median problem. Both
the problems consider only a single facility type (data item) in the network. In
the facility-location problem, setting up a cache at a node incurs a certain fixed
cost, and the goal is to minimize the sum of total access cost and the setting-
up costs for all the caches, without any constraint. On the other hand, the
k-median problem minimizes the total access cost under the number constraint,
i.e., that at most k nodes can be selected as caches. Both problems are NP-hard,
and a number of constant-factor approximation algorithms have been developed
for each of the problems [7, 15], under the assumption that the edge costs in
the graph satisfy the triangular inequality. Without the triangular inequality
assumption, either problem is as hard as approximating the set cover [14], and
therefore cannot be approximated better than O(log |V |) unless NP ⊆ P̃. Here,
|V | is the size of the network.

Several papers in the literature circumvent the hardness of the facility-location
and k-median problems by assuming that the network has a tree topology [19, 22].
In particular, Li et al. [19] address the optimal placement of web proxies in a tree
topology, essentially designing an O(n3k2) time dynamic programming algorithm
to solve the k-median problem optimally in a tree of n nodes. In other related
works on cache placement in trees, Xu et al. [22] discuss placement of “transpar-
ent” caches to minimize the sum of reads and writes, Krishnan et al. [18] consider
a cost model based on cache misses, and Kalpakis et al. [16] consider a cost model
involving reads, writes, and storage. In sensor networks, which consist of a large
number of energy-constrained nodes, the constraint on the number of cache nodes
is of little relevance.

Relatively lesswork has been done for caching in sensor networks. Intanagonwi-
wat et al. [6] propose directed diffusion, a data dissemination paradigm for sensor
networks, which adopts a data centric approach and enables diffusion to achieve
energy savings by selecting empirically good paths and by caching/processingdata
in-network. Bhattacharya et al. [4] develop a distributed framework that improve
energy consumption by application layer data caching and asynchronous update
multicast. In this article, we consider cache placement in sensor network under
update cost constraint. As mentioned before, the update cost is typically mostly
borne by the server and the surrounding nodes, and hence, is a critical con-
straint. To the best of our knowledge, we are not aware of any prior work that
considers the cache placement problem under an update cost constraint.

3 Tree Topology

In this subsection, we address the cache placement problem under the update
cost constraint in a tree network. The motivation of considering a tree topology
(as opposed to a general graph model which we consider in the next section) is
two fold. Firstly, data dissemination or gathering in sensor networks is typically
done over an appropriately constructed network tree. Secondly, for the tree topol-
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Fig. 1. Dynamic Programming algorithm for the tree topology

ogy, we can actually design polynomial time optimal algorithms. Thus, we can
apply such optimal algorithms for the tree topology to the general graph topol-
ogy by extracting an appropriate tree (e.g., shortest-path tree or near-optimal
Steiner tree connecting the clients) from the general graph. In Section 5, we show
through extensive simulations that such a strategy of applying an optimal tree
algorithm to a general graph topology yields heuristics that deliver near-optimal
cache placement solutions.

Consider an ad hoc network tree T rooted at the node r. Since the commu-
nication edges are bidirectional, any node in the network could be designated as
the root; thus, we assume that the root node r is also the server for the data item.
The cache placement problem under update cost constraint in a tree topology
can be formally defined as follows.

Given the tree network T rooted at r, a data item whose server is r, and an
update cost constraint ∆, find a set of cache nodes M ⊆ T (r ∈ M) for storing
copies of the data item, such that the total access cost τ(T, M) =

∑
i∈T ai ×

minj∈Mdij is minimized under the constraint that the total update cost µ(M) is
less than ∆, where µ(M) is the cost of minimum cost Steiner tree over M . Note
that the minimum cost Steiner tree spanning over a set of nodes M is simply
the smallest subtree connecting the root r to all the nodes in M .

3.1 Dynamic Programming Algorithm

In this subsection, we present an optimal dynamic programming algorithm for
the above described cache placement problem under the update cost constraint
in a tree topology. We first start with some subtree notations [19] that are needed
to describe our dynamic programming algorithm.

Subtree Notations. Consider the network tree T rooted at r. We use Tu to
denote the subtree rooted at u in the tree T with respect to the root r (i.e.,
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the subtree rooted at u not containing r); the tree Tr represents the entire tree
T . For ease of presentation, we use Tu to also represent the set of nodes in the
subtree Tu. We use p(i) to denote the parent node of a node i in the tree Tr. Let
π(i, j) denote the unique path from node i to node j in Tr, and dk,π(i,j) denote
the distance of a node k to the closest node on π(i, j).

Consider two nodes v and u in the network tree, where v in an ancestor of
u in Tr. See Figure 1(a). Let Lv,u be the subgraph induced by the set of nodes
on the left of and excluding the path π(v, u) in the subtree Tv, and Rv,u be the
subgraph induced by the set of nodes on the right of and including the path
π(v, u), as shown in Figure 1(a). It is easy to see Tv can be divided into three
distinct subgraphs, viz., Lv,u, Tu, and Rv,u.

DP Algorithm. Consider a subtree Tv and a node x on the leftmost branch of
Tv. Let us assume that all the nodes on the path π(v, x) (including v and x) have
already been selected as caches. Let τ(Tv, x, δ) denote the optimal access cost
for all the nodes in the subtree Tv under the additional update cost constraint
δ, where we do not include the cost of updating the already selected caches on
the path π(v, x). Below, we derive a recursive equation to compute τ(Tv, x, δ),
which would essentially yield a dynamic programming algorithm to compute
τ(Tr, r, ∆) – the minimum value of the total access cost for the entire network
tree Tr under the update cost constraint ∆.

Let Ov be an optimal set (not including and in addition to π(v, x)) of cache
nodes in Tv that minimizes the total access time under the additional update
cost constraint δ. Let u be the leftmost deepest node of Ov in Tv, i.e., the node
u is such that Lv,u ∩ Ov = ∅ and Tu ∩ Ov = {u}. It is easy to see that adding
the nodes along the path π(v, u) to the optimal solution Ov does not increase
the additional update cost incurred by Ov, but may reduce the total access cost.
Thus, without loss of generality, we assume that the optimal solution Ov includes
all the nodes along the path π(v, u) as cache nodes, if u is the leftmost deepest
node of Ov in Tv.

Recursive Equation. As described above, consider an optimal solution Ov that
minimizes τ(Tv, x, δ), and let u be the leftmost deepest node of Ov in Tv. Note
that Ov does not include the nodes on π(v, x). Based on the definition of u and
possible cache placements, a node in Lv,u will access the data item from either
the nearest node on π(v, u) or the nearest node on π(v, x). In addition, any node
in Tu will access the data item from the cache node u, while all other nodes
(i.e., the nodes in Rv,u) will choose one of the cache nodes in Rv,u to access
the data item. See Figure 1(b). Thus, the optimal access cost τ(Tv, x, δ) can be
recursively defined in terms of τ(Rv,u, p(u), δ−du,π(v,x)) as shown below. Below,
the quantity du,π(v,x) denotes the shortest distance in Tv from u to a node on the
path π(v, x) and hence, is the additional update cost incurred in updating the
caches on the path π(v, u). We first define S(Tv, x, δ) as the set of nodes u such
that the cost of updating u is less than δ, the additional update cost constraint.
That is, S(Tv, x, δ) = {u|u ∈ Tv ∧ (δ > du,π(v,x))}.
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Now, the recursive equation can be defined as follows.

τ(Tv, x, δ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
i∈Tv

ai × di,π(v,x) if S(Tv, x, δ) = ∅

minu∈S(Tv,x,δ)⎛

⎝

∑
i∈Lv,u

ai × min(di,π(v,u), di,π(v,x))
+

∑
i∈Tu

aidiu

+τ(Rv,u, p(u), δ − du,π(v,x))

⎞

⎠

In the above recursive equation, the first case corresponds to the situation
when the additional update constraint δ is not sufficient to cache the data item
at any more nodes (other than already selected cache nodes on π(v, x)). For
the second case, we compute the total (and minimum possible) access cost for
each possible value of u, the leftmost deepest additional cache node, and pick
the value of u that yields the minimum total access cost. In particular, for a
fixed u, the first term corresponds to the total access cost of the nodes in Lv,u.
Note that for a node in Lv,u the closest cache node is either on the path πv,x or
πv,u. The second and third terms correspond to the total access time of nodes
in Tu and Rv,u respectively. Since the tree Tu is devoid of any cache nodes, the
cache node closest to any node in Tu is u. The minimum total access cost of
all the nodes in Rv,u can be represented as τ(Rv,u, p(u), δ − du,π(v,x)), since the
remaining available update cost is δ − du,π(v,x) where du,π(v,x)) is the update
cost used up by the cache node u. The overall time complexity of the above
dynamic programming algorithm can be shown to be O(n4 + n3∆) by careful
precomutation.

4 General Graph Topology

The tree topology assumption makes it possible to design a polynomial-time
optimal algorithm for the cache placement problem under update cost constraint.
In this subsection, we address the cache placement problem in a general graph
topology. In the general graph topology, the cache placement problem becomes
NP-hard. Thus, our focus here is on designing polynomial-time algorithms with
some performance guarantee on the quality of the solution.

As defined before, the total update cost incurred by a set of caches nodes is
the minimum cost of an optimal Steiner tree over the set of cache nodes and the
server; we refer to this update cost model as the Steiner tree update cost model.
Since the minimum-cost Steiner tree problem is NP-hard in general graphs, we
solve the cache placement problem in two steps. First, we consider a simpli-
fied multiple-unicast update cost model and present a greedy algorithm with a
provable performance guarantee for the simplified model. Then, we improve our
greedy algorithm based upon the more efficient Steiner tree update cost model.

4.1 Multiple-Unicast Update Cost Model

In this section, we consider the cache placement problem for general network
graph under a simplified update cost model. In particular, we consider the
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multiple-unicast update cost model, wherein we model the total update cost
incurred in updating a set of caches as the sum of the individual shortest path
lengths from the server to each cache node. More formally, the total update cost
of a set M of cache nodes is µ(M) =

∑
i∈M dsi, where s is the server. Using this

simplified update cost model, the cache placement problem in general graphs for
update cost constraint can be formulated as follows.

Problem Under Multiple-Unicast Model. Given an ad hoc network graph
G = (V, E), a server s with the data item, and an update cost ∆, select a set of
cache nodes M ⊆ V (s ∈ M) to store the data item such that the total access
cost τ(G, M) =

∑
i∈V ai × minj∈Mdij is minimum, under the constraint that

the total update cost µ(M) =
∑

i∈M dsi < ∆.
The cache placement problem with the above simplified update cost model is

still NP-hard, as can be easily shown by a reduction from the k-median problem.
A number of constant-factor approximation algorithms have been proposed [7,
15] for the k-median problem which can also be used to solve the above cache
placement problem. However, all the constant-factor approximation algorithms
are based on the assumption that the edge costs in the network graph satisfy
the triangular inequality. Moreover, the proposed approximation algorithms for
k-median problem cannot be easily extended to the more efficient Steiner tree
update cost model. Below, we present a greedy algorithm that returns a solution
whose “access benefit” is at least 63% of the optimal benefit, where access benefit
is defined as the reduction in total access cost due to cache placements.

Greedy Algorithm. In this section, we present a greedy approximation algo-
rithm for the cache placement problem under the multiple-unicast update cost
constraint in general graphs, and show that it returns a solution with near-
optimal reduction in access cost. We start with defining the concept of a benefit
of a set of nodes which is important for the description of the algorithm.

Definition 1. (Benefit of Nodes) Let A be an arbitrary set of nodes in the sensor
network. The benefit of A with respect to an already selected set of cache nodes
M , denoted as β(A, M), is the decrease in total access cost resulting due to the
selection of A as cache nodes. More formally, β(A, M) = τ(G, M)−τ(G, M ∪A),
where τ(G, M), as defined before, is the total access cost of the network graph
G when the set of nodes M have been selected as caches. The absolute benefit
of A denoted by β(A) is the benefit of A with respect to an empty set, i.e.,
β(A) = β(A, ∅).

The benefit per unit update cost of A with respect to M is β(A, M)/µ(A),
where µ(A) is the total update cost of the set A under the multiple-unicast
update cost model. �

Our proposed Greedy Algorithm works as follows. Let M be the set of caches
selected at any stage. Initially, M is empty. At each stage of the Greedy Algo-
rithm, we add to M the node A that has the highest benefit per unit update
cost with respect to M at that stage. This process continues until the update
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cost of M reaches the allowed update cost constraint. The algorithm is formally
presented below.

Algorithm 1. Greedy Algorithm
Input: A sensor network graph V = (G, E).

Update cost constraint ∆.
Output: A set of cache nodes M .
BEGIN

M = ∅;
while (µ(M) < ∆)

Let A be the node with maximum β(A, M)/µ(A).
M = M ∪ {A};

end while;
RETURN M ;

END. ♦

The running time of the above greedy algorithm is O(kn2), where k is the
number of iterations and n is the number of nodes in the network. Note that the
number of iterations k is bounded by n.

Performance Guarantee of the Greedy Algorithm. The Greedy Algorithm
returns a solution that has a benefit at least 63% of that of the optimal solution.
The proof techniques used here are similar to the techniques used in [11] for
the closed related view-selection problem in a data warehouse. Due to the space
limitation, we omit the proof here.

Theorem 1 Greedy Algorithm (Algorithm 1) returns a solution M whose abso-
lute benefit is of at least (1−1/e) times the absolute benefit of an optimal solution
having the update cost (under the multiple-unicast model) of at most that of M .

4.2 Steiner Tree Update Cost Model

Recall that the constant factor performance guarantee of the Greedy Algorithm
described in previous section is based on the multiple-unicast update cost model,
wherein whenever the data item in a cache nodes needs to be updated, the
updated information is transmitted along the individual shortest path between
the server and the cache node. However, the more efficient method of updating
a set of caches from the server is by using the optimal (minimum-cost) Steiner
tree over the selected cache nodes and the server. In this section, we improve
the performance of our Greedy Algorithm by using the more efficient Steiner
tree update cost model, wherein the total update cost incurred for a set of cache
nodes is the cost of the optimal Steiner tree over the set of nodes M and the
server of the data item.

Since the minimum-cost Steiner tree problem is NP-hard, we adopt the sim-
ple 2-approximation algorithm [10] for the Steiner tree construction, which con-
structs a Steiner tree over a set of nodes L by first computing a minimum
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spanning tree in the “distance graph” of the set of nodes L. We use the term 2-
approximate Steiner tree to refer to the solution returned by the 2-approximation
Steiner tree approximation algorithm. Based on the notion of 2-approximate
Steiner tree, we define the following update cost terms.

Definition 2. (Steiner Update Cost) The Steiner update cost for a set M of
cache nodes, denoted by µ′(M), is defined as the cost of a 2-approximate Steiner
tree over the set of nodes M and the server s.

The incremental Steiner update cost for a set A of nodes with respect to a
set of nodes M is denoted by µ′(A, M) and is defined as the increase in the cost
of the 2-approximate Steiner tree due to addition of A to M , i.e., µ′(A, M) =
µ′(A ∪ M) − µ′(M). �

Based on the above definitions, we describe the Greedy-Steiner Algorithm
which uses the more efficient Steiner tree update cost model as follows.

Algorithm 2. Greedy-Steiner Algorithm
Same as Algorithm 1 except µ is changed to µ′. ♦

Unfortunately, there is no performance guarantee of the solution delivered by
the Greedy-Steiner Algorithm. However, as we show in Section 5, the Greedy-
Steiner Algorithm performs the best among all our designed algorithms for the
cache placement problem under an update cost constraint.

4.3 Distributed Implementation

In this subsection, we design a distributed version of the centralized Greedy-
Steiner Algorithm (Algorithm 2). Using similar ideas as presented in this sec-
tion, we can also design a distributed version of the centralized Greedy Algorithm
(Algorithm 1). However, since the centralized Greedy-Steiner Algorithm outper-
formed the centralized Greedy Algorithm for all ranges of parameter values in
our simulations, we present only the distributed version of Greedy-Steiner Algo-
rithm. As in the case of centralized Greedy-Steiner Algorithm, we cannot prove
any performance guarantee for the presented distributed version. However, we
observe in our simulations that solution delivered by the distributed version is
very close to that delivered by the centralized Greedy-Steiner Algorithm. Here,
we assume the presence of an underlying routing protocol in the sensor network.
Due to limited memory resources at each sensor node, a proactive routing pro-
tocol [20] that builds routing tables at each node is unlikely to be feasible. In
such a case, a location-aided routing protocol such as GPSR [17] is sufficient for
our purposes, if each node is aware of its location (either through GPS [12] or
other localization techniques [2, 5]).

Distributed Greedy-Steiner Algorithm. The distributed version of the cen-
tralized Greedy-Steiner Algorithm consists of rounds. During a round, each non-
cache node A estimates its benefit per unit update cost, i.e., β(A, M)/µ′(A, M),
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as described in the next paragraph. If the estimate at a node A is maximum
among all its communication neighbors, then A decides to cache itself. Thus,
during each round, a number of sensor nodes may decide to cache the data item
according to the above criteria. At the end of each round, the server node gath-
ers information from all the newly added cache nodes, and computes the Steiner
tree involving all the selected cache nodes till the round. Then, the remaining
update cost (i.e., the given update cost constraint minus the current update cost
of the Steiner tree involving the selected cache nodes) is broadcast by the server
to the entire network and a new round is initiated. If there is no remaining up-
date cost, then the server decides to discard some of the recently added caches
(to keep the total update cost under the given update cost constraint), and the
algorithm terminates. The algorithm is formally presented below.

Algorithm 3. Distributed Greedy-Steiner Algorithm
Input: A network graph V = (G, E).

Update cost constraint ∆.
Output: The set of cache nodes M .
BEGIN

M = ∅;
while (µ′(M) < ∆)

Let A be the set of nodes each of which (denoted as A)
has the maximum β(A, M)/µ′(A, M) among its
non-cache neighbors.
M = M ∪ A;

end while;
RETURN M ;

END. ♦

Estimation of µ′(A, M). Let A be a non-cache node, and T S
A be the shortest path

tree from the server to the set of communication neighbors of A. Let C ∈ M
be the cache node in T S

A that is closest to A, and let d be the distance from
A to C. In the above Distributed Greedy-Steiner Algorithm, we estimate the
incremental Steiner update cost µ′(A, M) to be d. The value d can be computed
in a distributed manner at the start of each round as follows. As mentioned
before, the server initiates a new round by broadcasting a packet containing the
remaining update cost to the entire network. If we append to this packet all
the cache nodes encountered on the way, then each node should get the set of
cache nodes on the shortest path from the server to itself. Now, to compute d,
each node only needs to exchange the above information with all its immediate
neighbors.

Estimation of β(A, M). A non-cache node A considers only its “local” traffic to
estimate β(A, M), the benefit with respect to an already selected set of cache
nodes M . The local traffic of A is defined as the data access requests that use
A as an intermediate/origin node. Thus, the local traffic of a node includes its
own data requests. We estimate the benefit of caching the data item at A as
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β(A, M) = d× t, where t is the frequency of the local traffic observed at A and d
is the distance to the nearest cache from A (which is computed as shown in the
previous paragraph). The local traffic t can be computed if we let the normal
network traffic (using only the already selected caches in previous rounds) run
for some time between successive rounds. The data access requests of a node
A during normal network traffic between rounds can be directed to the nearest
cache in the tree T S

A as defined in the previous paragraph.

5 Performance Evaluation

We empirically evaluate the relative performances of the cache placement algo-
rithms for randomly generated sensor networks of various densities. As the focus
of our work is to optimize access cost, this metric is evaluated for a wide range
of parameters such as number of nodes and network and network density, etc.

We study various caching schemes (listed below) on a randomly generated
sensor network of 2,000 to 5,000 nodes in a square region of 30 × 30. The dis-
tances are in terms of arbitrary units. We assume all the nodes have the same
transmission radius (Tr), and all edges in the network graph have unit weight.
We have varied the number of clients over a wide range. For clarity, we first
present the data for the case where number of clients is 50% of the number of
nodes, and then present a specific case with varying number of clients. All the
data presented here are representative of a very large number of experiments we
have run. Each point in a plot represents an average of five runs, in each of which
the server is randomly chosen. The access costs are plotted against number of
nodes and transmission radius and several caching schemes are evaluated:

– No Caching – serves as a baseline case.
– Greedy Algorithm — greedy algorithm using the multiple-unicast update cost

model (Algorithm 1).
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Fig. 2. Access cost with varying number of nodes in the network for different update
cost constraints. Transmission radius (Tr) = 2. Number of clients = 50% of the number
of nodes, and hence increases with the network size.
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Fig. 3. Access cost with varying transmission radius (Tr) for different update cost
constraints. Number of nodes = 4000, and number of clients = 2000 (50% of number
of nodes).

– Centralized Greedy-Steiner Algorithm — greedy algorithm using the Steiner
tree-based update cost model (Algorithm 2).

– Distributed Greedy-Steiner Algorithm – distributed implementation of the
Greedy-Steiner Algorithm (Algorithm 3).

– DP on Shortest Path Tree of Clients – Dynamic Programming algorithm
(Section 3.1) on the tree formed by the shortest paths between the clients
and the server.

– DP on Steiner Tree of Clients – Dynamic Programming algorithm (Sec-
tion 3.1) on the 2-approximate Steiner tree over the clients and the server.

Figure 2 shows the effect of the number of nodes; the transmission radius
(Tr) is fixed at 2. Figure 3 shows the effect of Tr; a network of 4,000 nodes is
chosen for these experiments and Tr is varied from 1 to 4. The general trend
in these two sets of plots is similar. Aside from the fact that our algorithms
offer much less total access cost than the no-caching case, the plots show that (i)
the two Steiner tree-based algorithms (DP on Steiner Tree of Clients and Cen-
tralized Greedy-Steiner Algorithm) perform equally well and the best among all
algorithms except for very sparse graphs; (ii) the Greedy-Steiner Algorithm pro-
vides the best overall behavior; (iii) the Distributed Greedy-Steiner Algorithm
performs very closely to its centralized version.

6 Conclusions

We have developed a suite of data caching techniques to support effective data
dissemination in sensor networks. In particular, we have considered update cost
constraint and developed efficient algorithms to determine optimal or near-
optimal cache placements to minimize overall access cost. Minimization of ac-
cess cost leads to communication cost savings and hence, energy efficiency. The
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choice of update constraint also indirectly contributes to resource efficiency. Two
models have been considered – one for a tree topology, where an optimal algo-
rithm based on dynamic programming has been developed, and the other for the
general graph topology, which presents a NP-hard problem where a polynomial-
time approximation algorithm has been developed. We also designed efficient
distributed implementations of our centralized algorithms, empirically showed
that they performs well for random sensor networks.
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