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ABSTRACT 

The effect of surface energy on the itmlinescence line shape of 

electron hole droplets is considered theoretically. A shift 2O/rn of 
o 

the high energy cut off of the line is predicted, and two contributions 

to the variation of the line width are discussed. A differential method 

is described which allows the measurements of these effects. The radius 

of EHD near threshold can be fitted by a simple model which takes into 

account the surface energy and the internal EHD recombination. 

I. INTRODUCTION 

Bulk properties of electron hole drops (SHD) in germanium are now 

well understood, l) Several authors have published recently theoretical 

calculation of the surface energy of the electron hole liquid. 2) In 

this paper we investigate the dependence of the EHD luminescence on 

their radius r, through the effect of surface energy. We show how 

small changes of luminescence line shape can be detected and used to 

measure EHD radius near the threshold of EHD condensation 3) and thus 

obtain a deeper insight into the nucleation processes. 

II. THEORETICAL MODEL 

We consider a droplet of radius r containing N electron hole pairs. 

We restrict our consideration to T = 0 for simplicity. The total energy 

of the drop is the sum of the volume and surface energy: 

= ~ ( n )  + 4 ~ r 2 ~ (n )  ( i )  
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where O(n) is the EHD surface energy and E(n) iS the mean energy per 

pair as a function of the density n, which has a minimum value ~ at 

n = n o . Near n o we use the development E(n) = ~ + a (n-no)2. We can 

minimize ~ by a small change of n (and r). The condition d~/dn = 0 

gives: 4) 

= i G(no) - 3/2 no(dO/dn)n = no 
n - ~o r 2 " (2) 

a n 
o 

which is the change of the density caused by the pressure due to surface 

tension. 

The corrected value of ~ is now 

]2 
~O(no) - 3/2 n(do/dn)n = no (3) 

= N~ + 4 ~ r 2 ~(no) - ~ a n 4 

O 

Then, one can obtain the chemical potential 

d~ _ 1 d~ 

dN 4 ~ r 2 dr 
n 

[ ~ - 3/2 n(d~/dn)n ]2 
20 + 1 = no (4 )  

~(r) = ~ + rn 3r 2 4 
0 a n 

0 

In fact, we will use only the first order contribution to ~(r), i.e. 20 
rn o 

We consider now the effect on the luminescence line of the droplet 

of radius r. The high energy cut-off of the line corresponds to a 

transition of a droplet with N pairs to a droplet with (N-l) pairs, 

both in %heir ground state: This is just the definition of ~(r). As 

shown in figure l, the high energy cut-off of the luminescence line de- 

pends now on r through the high energy shift 2G/r n . This shift is 
O 

small, since its value is 6xl0 -3 meV at r = 1 ~m if one takes o = l0 -4 

erg/cm~ 2) The next step is to see if there is a change of the width 

A(r) of the luminescence line, which for r ~ ~ is equal, in the crudest 
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Fig.l. Recombination radiation line shape for 
a droplet of radius r. The solid line 
corresponds %o r ~ ~ and the dashed 
line to r finite. 

approximation, to EF(no) the sum of the Fermi energy of the electrons 

and the holes. Since there is no possibility to push the development 

~(r) in eq.(3) to the term of order r -1, we try to evaluate the dif- 

ference A(r) = ~*(n*) - ~(nr) between the energy of a droplet contain- 

ing N pairs in its ground state and in an excited state with one pair 

excited from the bottom of the bands to the Fermi levels. On can write: 

~*(n) = ~(n) + EF(n ) + 4 E r 2 A O(n) 

where A O(n) = (~*(n) - q ( n ) .  

Here ~*(n) is the surface energy in the excited state. ~*(n) should be 
@ 

in principle minimized by allowing a small change of n to n , but 

(n*-n) turns out to be like r -3, and such a change can be neglected. 

Using the value of n in eq.(2), one gets: 

Ii ~ (n°)-3/2 n°(d~/dn)n I 
= __ + 4 ~ Ao.(5) A ( r )  EF(no) + 2 = no r 2 

3r a no3 

There are two causes of change to A(r); the second term in eq.(5 ) 

-1 
corresponds to the compression (eq.2) and the third one gives also a r 
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contribution if A~ is like r -3. 

We need now some evaluation of dG/dn and A~. In the most usual 

way of computing G 2} one minimizes the quantity: 

s = ~+~ [m ~(m) + ~ ( ~ ) 2 ]  dx (6)  
~ x  

w h e r e  m ( x )  i s  t h e  d e n s i t y  p r o f i l e  i n  a d i r e c t i o n  x p e r p e n d i c u l a r  t o  t h e  

s u r f a c e ,  w h i c h  i s  s u p p o s e d  t o  b e  t h e  s a m e  f o r  e l e c t r o n s  a n d  h o l e s  ( n o  

d i p o l e  l a y e r ) .  A f u r t h e r  s i m p l i f i c a t i o n  i s  t o  a s s u m e  t h a t  m ( x )  v a r i e s  

a c c o r d i n g  t o  a g i v e n  f u n c t i o n  w i t h  j u s t  o n e  p a r a m e t e r  d ,  t h e  t h i c k n e s s  

o f  t h e  s u r f a c e  l a y e r .  W i t h  s c a l i n g  a r g u m e n t s ,  S c a n  b e  t r a n s f o r m e d  t o :  

d n 
= = B(n) s A(n) + 

n 

T h e n ,  ~ i s  o b t a i n e d  b y  m i n i m i z i n g  S w i t h  r e s p e c t  t o  d :  

~(n) = 2 VACn)B(n ) 

d6/dn is probably small, because if one takes for m(x) a linear function 

of x, then (dA/dn)n O = 0 and if one takes m(x) = n (l+exp(-x/d) -I then 

dB/dn = O. So we assume that d~/dn can be neglected in eq.(5). 

In an attempt to obtain a (n) in eq.(6) we can modify the first 

term in the integrand 

m E(m) ~ m E(m) + mlnV [EF(m ) - EF(n)] 

but, we do not know how to modify the second one. Then, taking m(x) as 

a linear function of x in the interval (0,d) one can compute A*(n) 

1 
A*(n) = ~o m E(m) dm + ~-~ j: m [EF(m ) - EF(n ) ] dm 

in 
A * ( n )  = A - g V EF ( n ) "  

In this approximation, B is unchanged. Thus 
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4o = ~ A_~A _ qn E F 
2A 16 AV " 

The contribution to the width A(r) (last term of eq. (5)) is: 

4 % r 2 A~ = - I --~n E F _- - i ~_ E F (7) 
2 16A 8 r 

n since A = ~ ~ . 

Taking d = 60 A, this contribution (7) is - 23 EF/r(r in A) which has 

to be compared to EF(n)-EF(no) = 40 EF ' taking ~ = l0 -4 erg/cm 2 and 
r 

a = 1.2×10 -35 meV cm -6 With the same units 

~r - ~ = + ~ EF " 

We must emphasize that this evaluation of AO is a rough approxima- 

tion. It proves that ~a is like r -3. We hope that the negative sign 

in (7) is correct, but we cannot have any confidence in the order of 

magnitude. However, one can take it as an indication that a rather 

strong compensation occurs between the two r -I contribution to A(r) in 

eq.(5). 

III. EXPERIMENTAL SET UP 

The idea is to measure, near the threshold of EHD condensation, 

the shift of the luminescence line of EHD when their size changes.3) 

As shown below, EHD size depends on the pump level and also because of 

hysteresis, 5) on the pump level history. A pure Ge sample (NA-N D ~ 

2xlO I0 cm -3) is immersed in liquid He and excited by a very stable 

tungsten halogen lamp monitored by a special chopper, as shown in Fig. 

2, so that both levels of pump Jl and J2 (Jl ~ i0 J2) have opposite 

phases. The corresponding luminescence signals, analyzed through a 

grating spectrometer followed by a cooled PbS cell is sent to a lock in 

amplifier. The duration of Jl is adjusted in order to get zero at the 

maximum of the EHD line. The resulting signal is proportional to the 
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Fig.2. (a) (b) - Time and phase 
dependence of the excitation 
in the differential experiment. 
The chopping frequency is 75 
Hz. 
(c) - Luminescence signal of 
the 709 meV EHD line versus 
excitation Jl when J is con- 
tinuously increased from zero 
%o i000 (off scale) and back 

to zero (Jth B ~ 2 mW/cm2). 
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difference between the line shapes for excitation levels J1 and J2" 

This differential method allows a great amplification of small changes 

in line shape. Besides, adding just before J2 and excitation J3 equal 

to Jl' and in phase quadrature with J1 and J2 (see Fig. 2(b)), we can 

make measurements on the descending branch (curve B in Fig. 2(c)) of 

the optical hysteresis. The excitation scheme of Fig. 2(a) gives data 

on the rising branch (curve A); here J3 is not functional, but is left 

for convenience. One can switch from A to B just by changing the 

rotation of the chopper from clockwise to counter clockwise. Fig. 3 

gives typical data obtained on branch B at J2 ~10 Jth B" The peaks at 

713,6 meV and 705.2 meV are due to free excitons. 

In the region of the LA phonon assisted emission of EHD (~ 709 meV) 

one can see a signal resembling the derivative of the EHD line. The 

differential signal can be analyzed as follows. If f (hv) is the line 

shape at Jl' we suppose that the change at J2 can involve a shift 8 and 

a dilatation of the line g giving f [(1 + ~)hv + 8 ]. Then the dif- 

ferential signal is: 
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(a) - Typical differential 
luminescence signal at 1.61K 

for J2 ~ l0 Jth B" 

(b) - Variation ~ith the excita- 
tion of the radius of droplets 
on branch A and B of Fig. 2(c). 

A s  = (~ + ~hv)  d f / d h v  (S )  

Here, if hv = 0 at the high energy cut-off of the line, then the shift 

of the high and low energy cut-off are respectively 6 and (6 - ~EF). 

IV. DISCUSSION OF THE EXPERIMENTAL RESULTS 

a) Line Shape 

Within the experimental uncertainties, the shape of the differen- 

tial signal (Fig. 3(a)) is quite insensitive to the experimental con- 

ditions. This is consistent with the assumption that both 6 and g are 

-i 
like r Using the analysis sketched at the end of Chapter III, one 

obtains gE F = 0.3 6. In fact, if r I and r 2 are the radii of ~HD 
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to J1 and J2 '  a l l  v a r i a t i o n s  are  indeed l i k e  ( r21  - r l l  ) .  corresponding 

6 = 2O/n O (r21 - rl I) and EE F = A(r2) - A(rl). 

As shown at the end of chapter II, if the only contribution to g 

was the change of Fermi energy caused by the drop contraction, then 

£E F would be equal to about 4 8. This experimental result, gE F = 0.3 

6, shows that indeed a strong compensation occurs between the two 

contributions considered in eq.(5). 

b) Measurement of Droplet Radius Near Threshold 

rll When Jl = i0 J2' the term can be neglected because r is a 

rather rapid function of J as shown in figure 3(b), which gives the 

value of r as a function of excitation along the two branches A and B 

of Fig. 2(c). These data are of great importance for the study of 

nucleation since from the data of Figs. 2(c) and 3(b) one can deduce 

the variation of the density of droplets. In the remaining of this 

paper, we want just to compare the value of r obtained on branch B at 

the threshold with a simple theory. 3) 

Taking into account the surface energy, the EHD work function is 

now 6 ) ¢ ( r )  ¢~ 2~/rn ° = - Therefore, the well known Pokrovskii eq.(1) 

relating the density in the exciton gas n to the drop radius r 
ex 

becomes : 

= ~r + n (2~/rnokT) (9) neE ex,o exp 

where ~ = 4 no/3 VexTo (Vex thermal velocity of excitons, T O 

time) and 

EHD life- 

n e x , o  = g(27~ m kT/h2)  3 /2  exp(-~oo/kT ) 

(g and m : degeneracy and mass of exciton). 

Relation (9) is shown in Fig. 4(b). There is now a value r 

is the radius of the smallest stable droplet. 

which 
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Fig.4. (a) - Experimental temperature 
dependence Of A E near threshold ~2x~ ~ 
Jth B" On the right scale, the 
corresponding values of r* have 

been plotted taking ~= 10_ 4 ~3 
erg/cm -2. The solid line is a 
fit using eq.(lO) as explained in 
in the text. ~ 5x~ 2 
(b) - The free exciton density 

× nex as a function of droplets 
radius r. The dashed line ~"~'z~-,o z 
corresponds to Pokrovskii's 
model~ and the solid line to the 
results obtained when the effect 
of surface energy is added. 
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r* = ~(A~T) I/2 exp(-¢ /2kT) exp(G/r*n kT) (i0) 

with ~2 = 2To(3/4 %)i/3/k no 4/3 and A is the coefficient of the 

. 
Richardson law for thermal emission; r is identified with the value of 

r obtained at the threshold of branch B. The fit of experimental data 

with eq.(10) is shown in Fig. 4(a). This fit depends in fact on two 

parameters, @~ and A/C since what is measured primarily is the quantity 

* r* AS = 2C/ no; This is clear if eq.(lO) is written: 

_~i exp(- AS/2kT) = --~n o (~)i/2 TI/2 exp(-¢ /2kT) . 
AS 2 

Fig. 4(a) shows that a good fit is obtained taking ¢ /k = 23°K and A/~ 

2 = 1.6×1014 s-iK-2erg-lcm . This value of A/O is close to the calculated 

m* value, taking A = 3.2×1010sec-iK-2 (with g = 16 and = 0.33 m ) and 
O 

= 10-4erg/cm 2. If ¢ /k = 16°K is used, A/q is reduced by a factor of 

120, a result which seems unreasonable. One can remark that the result 
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~/k = 16°K has always been obtained through the analysis of threshold 

data related to branch A 1'7) and that these data should be reanalyzed 

taking into account supersaturation effects. 8) 

To conclude, let us recall the importance of these measurement of 

droplets radius and density near the threshold of condensation for a 

detailed study of the nucleation processes. 
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