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The purpose of this contribution is to initiatea classification 

of graded Lie algebras (GLA) by dimension, for use in the future as a 

source of examples which exhibit some of the similarities and 

differences between ordinary Lie algebras (LA) and GLA. 

A GLA L = L o~Lj consists of an even part L o , which is a LA, 

and an odd part L I, which in particular is an Lo-module. There is a 

bilinearbracket operation which satisfies conditions (4) - (7) below. 

We say that L and L' are graded isomorphic (or equivalent) if there 

are isomorphisms Lo<-> Lo'and L i <-> Li ~ which preserve the bracket. 

We can ask the question: given a LA Lo and an Lo-module M, how 

many GLA L = L o@Li can we construct where Ll and M are isomorphic as 

Lo-modules~ Answering this question is the basis for the classifica- 

tion scheme. 

It is convenient to distinguish two types of GLA: we say that 

L is trivial if [ LIt L,]= IO~; otherwise, L is non-trivial. We note 

that a non-trivial GLA can be trivialized simply by putting to zero 

all anticommutators. In general we advocate classifying trivial 

GLA and then attempting to de-trivialize them. 

We say that L is an (m, n) algebra and has dimension m ~ n 

if dim Lo(resp. LI) is m (resp. n). We only consider m + n ~ 5. 

The elements of Lo(resp. LI) are denoted by Latin letters (resp. 

Greek letters) taken from the beginning of the alphabet. Then the 

commutativity and the Jacobi relations for L are 

[a, b] :-[b, a], (I) 
[a, =] =- [=, a], (2) 

[=, ~] -- [~, ~], (3) 
for all a, b ¢ Lo,m, # eLI , and 

I r a ,  b 1 ,  c 1 + l i b ,  c 1,  a l  + [ [ c ,  a ] ,  b ] = 0 , 
[ [ a ,  h i , =  1 + [ [ b , =  ] ,  a l  + [ [ = ,  a l , b ]  = 0 ,  
[[a, ~ ],# ] + [[a,# ], a] - [[#, a],m ] = 0 , 
[ [ = , p  ] , y ]  + [ [ ~ ' , y  ] , =  ] + [ [ y , =  ] , ~ '  ]i _ -  o , 

(4) 

(5) 
(6) 

(7) 
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for all a, b, c, • I~, a,# ,y c L i. 

We first consider the trivial algebras. The (m, O) algebras, 

m ~ 3, are LA and have been classified. The (0, n) algebra is 

the direct sum of n copies of the (0, 1) algebra defined by the 

anticommutator [a, a] = 0. This leaves us the task of classifying 

the (1, 1), (1, 2) and (2, 1) indecomposable trivial algebras. 

(1~ 1): the bracket relation between basis elements is [ a, a] = p a 

Either p = O, which gives a decomposable algebra, or, if p # O, 

we can scale to give p = 1. 

(1~ 2): The action of a on the basis a, # is defined by a real 

2 x 2 matrix which can be taken in one of the following forms: 

(1)< p o) (p I ) ( P ~))I where q ~ 0 and s ; (2) p ; (3) _ , 

p/q ~ O. In case (I) we can assume I P s I • O. Then by 

scaling we can take p = I and 0 • I s I ~ 1. In case (2), either 

p = 0 or we can scale to give p = 1. In case (3) we can scale to 

give q = 1 and p ~ O. 

(2~ 1): There are two choices for L o : either the decomposable 

Abelian algebra or the indecomposable algebra with non-trivial 

relation [ a, b ] = b. Suppose [ a,a] = pa , [b,~] = qa. When 

L e is Abelian we can reduce p or q to zero, which decomposes L. 

When Le is non-Abelian the relation (5) forces q = O. 

We now find the non-trivial algebras. There are no (m, O) 

or (0, n) non-trivial GLA. We can quickly dispose of the (q, n) alge- 

bras. If a, # are any two basis elements of L I we can write 

[a, #I = S # a, where S is a real, symmetric matrix. By a linear 

transformation we can take S in diagonal form: S a # -- G 8 S a. Either 

all of the S a are zero, in which case L is trivial, or at least one, 

S a say, is non-zero. In this case, put a = # = y in (7) to give 

3 [[ a, a ], a ] = O. This implies [a,a ] = O. Now, for y ~a , 

put a = # in (7). As y ~ a and S a ~ 0 this condition leads to 

[ a,y ] = O. It follows that y ~ a decouples unless Sy ~ O. 

Hence the only way to obtain an indecomposable algebra is to have 

S a ~ 0 and [a,a ] = 0 for all basis elements a • The a can be 

scaled to ensure S a = + I. Finally, possibly permuting the a and 

changing the sign of a leads to the 1 + n/2 or 1 + (n - 1)/2 

inequivalent indecomposable non-trivial (fl, n) algebras. 

We can also discuss (m, 1) algebras in some generality. We can 

assume a basis [ ai~ for Lo , in which either (a) [ aT,a ] = 0 for all 
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i or (b) [ a!, al = m and [ai, a]= 0 for all i > I. The relations 

(6) and (7) give [[ a , ~ ] , ai] = 2 [i[=, a i] , ~ ] , for all i, 

and 3 [[=, ~ ] , ~] = O. In case (a) we deduce that [=, ~] lies 

in the centre of Lo . It is not hard to see that indecomposability 

leads to the rejection of this case. In case (b) I =la • Lo: 

[a, =]:0~ forms a~ ideal of codimension one in L o containing 

[=, =] = b in its centre. Evidently we can write [ al , b] = 2b 

which implies that L o is non-Abelian. For m = 2 we can write 

[a, b] = b, [ a, =] = ~= , [=,~] = b where a = ½~. 

From this analysis we find that the number of families of 

equivalence classes of indecomposable real GLA, which are not LA, 

in dimensions one, two and three, are 1, 2 and 11, respectively. 

The corresponding numbers for ordinary LA are 1, I and 9- These 

numbers of course depend on our unspecified definition of a family 

of equivalence classes. We have, for example, for reasons which 

will be given in a future publication, separated, for the trivial 

(I, 2) algebras in case (I), the values of s, 0 ( Is~ < 1, s = ~ I. 

In a future publication we will extend the above classification 

to dimension four, and give tabluationsof derived series, radical~ 

Killing form, etc. 


