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It is the aim of this lecture and the following one presented by E.
Ruch to draw the attention of the audience to a certain partial order
on the set P(n) of partitions of a given natural number n.

This partial order in fact establishes a lattice structure on P(n)
which turns out to be the underlying combinatorial structure of the
representation theory of the symmetric group Sn. This partial order
can be described in terms of double-cosets of certain subgroups of Sn’
in terms of intertwining numbers of specific representations of Sn
which are induced from such subgroups, as well as it can be expressed
in terms of numbers of O-l-matrices with prescribed row and column
sums and in terms of properties of Young-tableaus.

These various ways of describing the partial order in question open the
way to recognize this lattice structure on P(n) as basic for various
applications. Applications in mathematics are in particular the repre-
sentation theory of Sn and of related groups like wreath products

GNSn, and certain existence theorems in combinatorics. This will be
described here, while applications to sciences which are closely re-
lated will be given by E. Ruch.



1. The diagram lattice

Let n denote a natural number, i.e. n ¢ N := {1,2.3,...}. A partition
of n is a finite sequence
a = (al,...,ah)
with the following properties:
(1) V 1<i<h (a; € N)

(ii) v 1<i<h (ai > ai+1),
(ii1) =P e, = n .

We shall sometimes abbreviate this by simply writing
o = n.
The partitions of n=6 are for example:
(6), (5,1), (4,2), (4,1%):2(4,1,1), (3%):=(3,3), (3,2,1),
(3,12):=(3,1,1,1), (22):2(2,2,2), (22,1%):=(2,2,1,1),
(2,1"y:=(2,1,1,1,1), (1%):=(1,1,1,1,1,1).
A partition o of n can be visualized by the corresponding Young-diagram

[«], which consists of n nodes in h rows and @y columns. The i-th row
of the diagram consists of o; nodes, and all the rows start in the same

column:
x X secescesseas X ay nodes
x X eseesesss X a, nodes
[a] := :
. 5 4 0 0% 8908805000 AL L 4
X X eee X .
oy nodes

Because of @s 2 g9 and as all the rows start in the same column, the
lengths ai, 1<i< ':al’ of the columns also form a partition of n, which
we denote by o':

t P

a' = (ai,...,aﬂ,).

It is called the partition associated with a. Its Young-diagram[a'] is
obtained from [«] by simply reflecting [e] in the main diagonal, e.g.

x X X X

yields [a'] = x x = [u,2,1].

We denote by P(n) the set of all the partitions of n:
P(n) := {a | o + n}.

The dominance order "g" is defined on P(n) with the aid of the partial
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sums “ 5
o; = Zl“u » 1<i<h.

We put, if a = (al,...,ah) +n, B = (81,..-,Sk) = n:
a 38 > Vic<i< minth,k} (of < °§)~

The smallestn, where "4" is not a total order, is n=6. The order diagram
of (P(6),4) looks as follows:

(6)

(5,1)

(4,2)
(32) (4,12)
(3,2,1)
(23) (3,17)
,12)
(2,1%)

It is important to characterize the situation when o 4 8 and there is
no y b n such that « €4 vy 4 8, which we abbreviate by

a < 8.
The following lemma which characterizes this situation is easy to prove:
1.1 Lemma: o &] 8 holds if and only if there exist i and J such that
(i) i < j, and B; = a;+1, and Bj = aj—l, while for all r % 1i,]
we have Br = A,
(ii) either 1 = j=-1 or a, = a..

1 J

In other words: &<« 8 holds if and only if [p] is obtained from [0(.] by
raising a node upwards from the end of the j-th row to the end of the
i-th row, and this step is as small as possible:
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It is not difficult to show that 1.1 implies
1.2 Lemma: VYV a,8+n (a a8 <> g' aa').

Using the partial sums again, we can define an infimum ¢« A B and a
supremum o Vv B of two partitions o and 8 of n as follows (cf. ref. 1):

(i) « A B := y,where of := min{o%,05}, 1<i<max{h,k},
i i2% =z
1 1 1
(ii) o V 8 := &,where cf 1=z min{c; ,cg }, 1<i<max{h',k'}.

It was shown in ref. 1 that the following holds:

1.3 Theorem: (P(n),4,A,v) is a lattice.

We call this lattice the diagram lattice since the name "partition

lattice” might be misleading, it is already a standard name for a dif-
ferent lattice structure.

This lattice is examined in ref. 2, where it is shown that the Moebius
function on this lattice takes values O, +1 only.

Partitions and the dominance order were hitherto used mainly in con-
nection with graphs and the question, which partitions form the edge
degree sequence of a graph (ef. ref. 3, chapter 6). But we shall not
stress this fact here, since we are above all interested in charac-

terizations of the dominance order in terms of group theory and re-

presentation theory, in order to get a better insight into this com-
binatorial structure (P(n),d) as well as into its applications.

It may be mentioned that the discovery of this structure being the
underlying combinatorial structure of a great part of representation
theory of the symmetric groups is quite recent, although it is quite
obvious already from the proofs used in the classical approaches.
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2. Young-subgroups of symmetric groups

We would like now to characterize partitions o and g of n, which
satisfy

a 4 B.
It is our aim to give four characterizations of this fact, one of them
is a representation-theoretical one, another one is group-theoretical,

and the last two of them are combinatorial characterizations.

In order to do this we introduce a specific class of subgroups of the
symmetric group Sn‘
We consider the symmetric group Sn’ acting on the set

n := {1,...,n}.

If vy = (Yl""’Yr) + n, then we can form partitions of the set n into

pairwise disjoint subsets gz of order D 1<i<r, i.e.

r
n= Vol V#) @lnal = o), Vi (nfl = vy

Let now SZ denote the subgroup of Sn which consists of the yi! elements
leaving each element of E\\EI fixed, 1<i<r. We can form the product SY
of all these subgroups:

[ 9]
"
=]

: sY N
Y i=g 7
which is obviously isomorphic to the direct product
r

X, S
i=1 Ti

of the symmetric groups SY . SY is called a Young-subgroup correspon-

ding to y. 1

The classical development of the representation theory of Sn starts off
with an examination of certain representations of Sn which are induced
from specific one-dimensional representations of such Young-subgroups.
In order to describe this, we denote by ISY the identity representation

of SY, where each 7 ¢ SY is mapped onto the one-rowed matrix (1). By

ASY we denote the alternating representation of Sy, where © ¢ SY is
mapped onto (sgnw), sgnw=+1 being the sign of the permutation =.

The representations of Srl induced from ISY and ASY are denoted by

ISY 4 Sn’ and ASY 4 Sn‘
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If now a and B are partitions of n, we would like to evaluate the in-
tertwining numbers (i.e. the inner products of the corresponding cha-

racters)

IS, + 3)

(ISa 4 Sn’ g n

and

(Isa + S _,AS; ¢ sn).

B
In order to do this, we apply Mackey's intertwining number theorem
(cf. ref 4,(U44.5)), which gives

_ -1 -1
2.1 (ISa 4 Sn’ISB 4 Sn) = L (I(Safﬁ nSBw ),I(Sar\ wSBﬂ 1)
S 1S
a B
if the sum is taken over the complete system of double-cosets Sa“Ss of
Sa and S8 in Sn’ Furthermore we obtain
_ -1 -1
2.2 (ISa 4 Sn’ASB 4 Sn) = o 1Ers (I(Sa f‘\wSBv ),A(Saﬁwssw ),
a "B

if again the sum is taken over the complete system of double-cosets.

Since the intersection Sar\ T3 n_l is a direct product of symmetric
groups and as both I(S M ﬂan' ) and A(S, NS,
identity representation and the alternating representation of this

+ 1), which are the

intersection, are irreducible, we have always

n TH, s, A s = 1,

(I(Sa N 1S 8

8
while

. -1
1, if Saf\'rrSBn = {1}

(I(s, M S w_i),A(Sa Ars )y =

B B8

0, otherwise.

Hence 2.1 shows that (ISa + Sn,IS8
double-cosets Sa"SB’ while (ISa + Sn,AS8
of double-cosets with trivial-intersection-property

+ Sn) is equal to the number of

4 Sn) is equal to the number

2.3 5, N nan'l = {1}.

This leads us to a closer examination of double=-cosets of Young-sub-

groups. Here we have a result of A.J. Coleman (ref. 5) at hand:

2.4 Theorem: If o = (al,...,uh) and B = (81,...,Bk) are partitions of
n with corresponding Young-subgroups Sa and SB’ then peSn

is contained in sans if and only if for 1<i<h and 1<j<k

B
In¢ A «[af1] = In A e[nfll.
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This theorem shows that the double-coset Sa"S
o
i

8 is characterized by the

numbers Zij HES |g N n[§§1|, which we may put together into the

hxk-matrix

.= B
(z35) 3= (lng n w[n51D.

We now obtain from 2.4:

2.5 Theorem: The mapping
. a B
£: 5 8, (]Eirﬂ “[Ej]l)

establishes a one-to-one correspondence between the set

of double-cosets sans and the set of hxk-matrices (Zij)

and prescribed row

B

with nonnegative integral entries Zij

sums o, = Zj Zij and prescribed column sums Zi Zij = Bj.
The restriction of f to the set of double-cosets Sawsswith
trivial-intersection-property 2.3 in particular establi-
shes a one-to-one correspondence between the set of these
double-cosets and the set of hxk-O-l1-matrices with pre-

scribed row sums ey and prescribed column sums Bj.

This theorem together with 2.1 and 2.2 demonstrates the equivalence of
the problems of evaluating (IS 4 SHPRE 4 8,) (or (IS, 4 S,sA8, ¢ s,)
resp.), counting the number of double-cosets Saﬂss (or those with
trivial-intersection-property, resp.), telling the number of hxk-matri-
ces with nonnegative integral entries (or hxk-O-l-matrices, resp.) with

prescribed row sums oy and column sums Bj'

In order to connect this result with the diagram lattice of the prece-
ding section we can use any one of the following two theorems (cf.
ref. 1 and ref. 5):

2.6 Theorem of Ruch/Schdnhofer: If S, and SB

which correspond to partitions o and B8 of n, then the in-

are Young-subgroups of Sn

tertwining number (ISu + 8, ,A8, + Sn) is nonzero if and

B
only if o 4 8'.

2.7 Theorem of Gale/Ryser: If a = (al,...,ah) and B = (61,...,Bk) are

partitions of n, then there exist O-l-matrices with row

sums a; and column sums Bj if and only if o 4 B8'.

The considerations made above show clearly that these two theorems are
equivalent, although they sound quite different. The links between them
are Mackey's intertwining number theorem and Coleman's characterization

of the double-cosets of Young-subgroups.
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The Gale/Ryser theorem is one of the most important existence theorems
in combinatorics. It serves in particular for proofs of the existence
of incidence structures. A typical and easy example is a necessary and
sufficient condition for the existence of tactical configurations with
prescribed parameters v,b,r and k. (A tactical configuration with para-
meters v,b,r and k is a triple (V,B,I) consisting of a set V of verti-
ces, a set B of blocks, and an incidence relation I ¢ VxB such that

|[Vv] = v, |B] = b, and where each v ¢ V is incident with exactly r
blocks, while each b ¢ B is incident with exactly k vertices, so that
in particular v+r = bek holds.)

The incidence matrix of such a tactical configuration is a vxb-0-1-ma-
trix with row sums all equal to r and column sums all equal to k. The
theorem of Gale and Ryser says that such a matrix (and hence also a
tactical configuration with parameters v,b,r and k) exists if and

only if we have a 9 B', where o := (r') and 8 := (kb), i.e. if and

only if

(V) « ®)r = (%),

S

or equivalently (ef. 1.2):
(K°) 4 () = ).

la

Hence by the Gale/Ryser theorem a tactical configuration with parame-
ters v,b,r and k exists if and only if ver = b+k and r < b, or equiva-

lently if and only if ver = b+k and k < v.

There are many other existence theorems in combinatorics for the proof
of which the Gale/Ryser theorem is the main tool (cf. e.g. ref. 6/7).

The Ruch/Schdnhofer theorem gives a deeper insight into the decompo-
sition of the induced characters ISa 4 Srl which we introduced at the

beginning of this section.
A first consequence of this theorem is
(Isa + Sn’ASa' + Sn) > 0.
We obtain in fact more than that, namely
2.8 (Isa t S ,AS 4 4 sn) = 1,

if we notice that there is exactly one O-1-matrix with row sums os and
column sums aj and apply the equality of the intertwining number and
the number of such O-1-matrices. 2.7 means that these two induced re-
presentations have a uniquely determined irreducible constituent in
common, which they both contain with multiplicity 1. We denote this
constituent by [a] so that we obtain by a slight abuse of the notation:
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2.9 lo] := IS, + S A AS,, + 8.

(We notice that [a] does depend only on the partition a of n and
neither on the partition of n which gives Sa nor on the partition of
n which gives Su,, for all Young=-subgroups SY which correspond to a
given y + n are conjugate subgroups of Sn.)

In order to show that the system
2.10 o] | ¢« -}

consists of pairwise inequivalent representations, so that it is a
complete system since it is of maximal order, one proves the following
2.11 (18, + s,,[8]) > 0o =>4 gp.

This is clear from the theorem of Ruch/Schdnhofer, for 2.9 shows that
(18, + sn,[sj) > 0 implies (IS 4 S ,AS,, + S ) > O, so that by 2.6
we obtain o 4 8 as it is stated.

Bl

In order to complete the proof of the fact that 2.10 is a complete
system, it remains to show that if [a] and [8] are equivalent, then
a = B. But this is easy to verify, for in the case when [a] is edui—
valent to [B] we have

1= (15, + 8_,[a]) = (IS, + 5, [6]) = (IS, + s,s[8]) = (15 + 5., [a]),
so that again by the Ruch/Schdénhofer theorem both
o 4 8B and B 3 o
and hence a = 8.

We now introduce the natural lexicographic order "<" on the set P(n)

of all the partitions o of n by putting
o <8 4> Ti (ag = By,00es 054 7 By, o5 < By
This is obviously a total order, furthermore it is clear that

2.12 Vo,8 =n (a 98=D o <8 ).

We put the multiplicities

m,e = (IS sn,[s])

together into a matrix Mn’ the rows and columns of which belong to the

partitions of n with respect to the lexicographic order:

(171 ... [8] ... [n]

IS + 3
: (1™ n
Mn HES e mCLB N ?Sa 4 Sn

IS(n) 4 Sn
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The Ruch/Schénhofer theorem tells us that Mn is an upper triangular
matrix with 1's along the main diagonal (e¢f. 2.8/9/11):

2.13 M =
s

and it says that Mg %+ O implies a 4 g. It is this fact which we have

in mind saying that the diagram lattice is the underlying combinatori-

al structure of a great part of the representation theory of the

symmetric group. (Later than in ref.1this was also noticed by ref.

8,9 and 10.)

The classical approaches use a weaker argument, they only use the
triangularity of Mrl together with the fact that there are 1's along
the main diagonal. They prove this partial result along an examina-
tion of idempotents.

This approach leads us to Young-tableaus and we would like to show
that a closer examination yields a characterization of o ¢ 8 in terms
of Young-tableaus. We give a short description of this since this
characterization of the partial order turns out to be useful for a

better understanding of various applications in sciences (c¢f. ref. 1).

A Young-tableau t% with diagram [a] arises from [o] by replacing the
nodes "x" of the diagram by the elements i e n = {1,...,n}. Replacing
the nodes by these elements in their natural order, we obtain for

example

The rows and columns of tg establish partitions of the set n. Let Hi

and Vi denote the corresponding Young-subgroups, the horizontal and
the vertical group of tg.

The group algebra QSn of Sn over the field Q of rational numbers con-

tains the elements

b4 i 1= I x , and Ui 1z b sgnp+p
T € Hl p € V1
o o

These elements are essentially idempotent, the generated left ideals
afford the representations ISa 4 Sn and ASG, + Sn'

The classical argument showing that Mn is triangular now runs as

follows. It is shown that for o > B we have



63

1 gl _
2.14 x.as v, =0,
which implies by general representation theory
1 1 _ -
(IH, + S_,AV, + S) = (IS, + S ,AS;,4 8.) = O.

In order to prove 2.14 we need only to show that for each = ¢ Sn we

have
2.15 Kokt = o

nUén-l is the vertical group of the tableau wtg, defined by

e s e e e s e s s

if tﬁ = ...i... , then ntg i= LLem(i)...

.. PR R AT RN Y

If now o >B, then there exist two elements of n, say i and j, which
occur in tg in the same row and in t® in the same column, so that in
particular 29{; =J(i(1 + (1j)), and 2waéw_1 = (1 - (ij))nifén_l,
hence

Hin¥oe™ = FHIG + G301 - GNaln™ = o,
and we are done.
We notice that the main step was an application of the fact that if
a > B, then for any two t* and t? there exist two elements i,Jj e n,
which occur in t% in the same row and in t® in the same column.
This leads us to the following definition. If t® is a tableau with

diagram [a], g another partition of n, then we denote by

D(t%,8)
the set of all the Young-tableaus te, where any two i and j of n,
which occur in t% in the same row, occur in t® in different columns.
Correspondingly we denote by

D(a,tB)
the set of all the Young-tableaus ta, where any two i and j of n,
which occur in tf in the same column, occcur in t% in different rows.

It is trivial that D(t%,8) #+ @ is equivalent to D(a,t?) + 0. Less
trivial is, that this is also equivalent to o ¢ 8 . It is easy to
show that D(t%*,8) % @ implies o 4 8 , the other direction is shown
by describing an algorithm which yields a tB ¢ D(t%,8).

This allows us to sum up as follows:

2.10 Theorem: If o = (al,...,ah) and B = (51,...,sk) are partitions
of n, Sa and SS corresponding Young-subgroups and @
and t® Young-tableaus with diagrams [o] and [8], re-
spectively, then the following properties are equiva-

lent:



(i) o ﬂ B';
(ii) B 4 a':
(iii) There exist double~-cosets SaﬂSB which satisfy
-1
S = .
N ' 'H'SS’IT {1}
(iv) There exist O-l-matrices with row sums aqs

and column sums Bqs--

...,ah
3By
(v)  D(t%,8) #0 ,

(vi) D(a,tf) + 0.

The equivalence (i) <> (ii) is more or less trivial by 1.1, the
equivalence (iii) <> (iv) was shown above, trivial is also (v) &> (vi)
as well as (iv) = (i) and (v) = (i).

In order to prove the rest, one may use Ryser's algorithmic proof of

(i) = (iv) and conclude showing (i) => (v) by describing an algorithm
which allows to construct from t% a tP ¢ D(t%,g).
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3. A generalization

We saw that Young-subgroups SY s Y & partition of n, play an impor-
tant role in the representation theory of the symmetric group Sn’ and
that some of the properties of the induced representations ISY 4 Sn
reflect the structure of the diagram lattice (P(n),4). These proper-
ties show up again in the applications, say in the theory of chirali-
ty of molecules (cf. ref. 1, 11), where symmetric groups and certain

generalizations are considered.

These generalizations which we have in mind are the so-called hyper-
octahedral groups Szwsn, a special case of the wreath product G~H

of a group G with a subgroup H of Sn' This group S shows up in the

S
2™n
theory of chirality when a skeleton with n numbered sites is consi-
dered to which ligands may be attached, this group then is the group
of all combinations of ligand permutations with site reflections

(ref. 11, p. 19).

The wreath product GAH consists of all the ordered pairs
(f37),
where f is a mapping from n into G, and m ¢ H. For two such mappings

f,g:n > G and a m ¢ H we define mappings fg, f_l, gx and e from n
into G by putting for each i ¢ n:

fe(i) 1= £(i)gli), £73( !

i) = £()7Y, g (1) := e(n (1)), e(i):=1,.

Then G~H forms a group subject to the multiplication
(£3m)(g50) := (fg 3m0).

This group has the following normal subgroup:

*

G” 1= {(f;1 | £f:n » G} ,

Sn)
which i1s isomorphic to the n~fold direct product Ra of G with itself.
We call G* the base group of GoH.

G¢* has a complement isomorphic to H:
H' := {(e3n) | = e H}

Since G* is a normal subgroup of GrH, we can very nicely apply
Clifford's theory of representations of groups with normal subgroups
in order to develop the representation theory of GvH once the repre-
sentation theory of G is known to a certain extent. We need a short

description of how this works (for more details cf. ref. 12, 13).

Let F denote a representation of G over the complex field C with re-
presentation space V. If n denotes a natural number, then we obtain
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an ordinary representation of GmSn with representation space the ten-

SO0r power

n
@V :=V ®C V(Ec;c... ®C v,
n factors, by simply putting
(£m v, @ ... @v)) = £(1)v 11y ®...0® f(n)v _4
™

™

(n)?

for each vi e V.

We denote this representation by

w
*F,
n

since it extends the n-fold outer tensor power ¥ F of F with itself,
which is a representation of the base group G¥ of GNSn.

If furthermore D is a representation of H, then D', defined by

D' ((f;m)) D(m),

yields also a representation of GvH, a third one is therefore the inner

tensor product
~

n
4F ®D'.
It follows from considerations in ref. 12 that if G is a finite group,

each ordinary irreducible representation of GvH is of the form

2.1 (R ® S') + G+H,
where R is the restriction of an outer tensor product of the form
h o
R= 4 (4 F.),
i=1 ¥

Fi suitable ordinary irreducible representations of G, which is a re-
presentation of GwSa < Gan, a ~ n, the restriction is to the subgroup

Gv{(H A Su)'

S is an ordinary irreducible representation of the intersection H r\Sa

of H with the Young-subgroup Sa.

Hence Young-subgroups occur in the representation theory of wreath
products Gan as inertia factors, i.e. as little groups of the first

kind in the terminology of ref. 14.

A special case 1s the wreath product S2msn, the so-called hyperoctahe-
dral group which was mentioned above. In this case the only irreducible
representations of G=S, are [2] and [1°], so that each ordinary irredu-

cible representation of Szmsn is of the form
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3.2 [(i[z] $122) © ([ol 4 [61)') 4 5,08,

= [(3[2] ® [a]") # (ft[12] ® [6]")] + s,n8.,

where r+s=n and o +~ , B+ S.

More generally for Smwsn: Let ul,..., ak be partitions of m and assume

ot < od, for all i<j, then a complete system of ordinary irreducible

representations of SmmSn is given by the set of representations of form
~ Lo td
n n
1 1 1 k k: k
3.3 (F 1@ T4 #(4 [T @ [F1D) + 58
_ i
where n;=n and 87 n;.

The question arises which of the properties of the Young-subgroups SY
and theilr representations which are relevant for the representation
theory of Sn the corresponding subgroups G'\:SY of,G'\aSn and their repre-
sentations do also possess.

The most important properties of the S and the representations ISY +Sn

¥
were described by the matrix Mn = (ma ). If

B8

[+

B8
denotes the value of the character of ISa 4 Sn on the class of elements

£

with cycle-partition g + n, and if

[+ ]
g

denotes the €ﬁgue of the character of [a] on the same class, then by

definition of Mn we have for the matrices

s= o k=1 * = o
X s (CB) and E ¢ (EB)
(Xn is the character table of Sn!) the following equation:
- wl.a
3.4 X, = M_TeE .

Since Mn has determinant 1, M;i is a matrix over the ring Z of the
rational integers. Hence by 3.4 each character ca of Sn is a Z-linear
combination of the characters gY which are the characters of transitive

permutation representations.

Thus the character ring of Sn possesses a Z-basis consisting of transi-

tive permutation characters.

This is known since the time of Frobenius. That the same is true for
hyperoctahedral groups was shown in ref. 15, ref. 16. The corresponding
results for the most general case GoH (ref. 17) read as follows:
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345 Theorem:Let G denote a finite group and H a subgroup of Sn'

(1) If the characters of G and the characters of all the
intersections Hr\SY of H with Young-subgroups SY of
Srl are Z-linear combinations of permutation charac-
ters, then the same holds for the characters of G~H.

(ii) If the character ring of G has a Z-basis of transi-
tive permutation characters, then the same holds for

the character rings of the groups GmSn.

The proof is quite long so that we intend to sketch only those aspects
of it, which are of general interest.

The basis for all character theoretical considerations concerning %~
wreath products is a result on the character of the representation # F
which will be described next.

If 4 ¢ Sn has the following decomposition into pairwise disjoint cyeclic

factors:

c( ) -
poE T (G w3 e TG,
V=1 v v v
then we associate with each cyclic factor (jv ees nlv_i(jv)) and the
mapping f:n + G the cycle-product gv(f;“> defined by

. -1,. -1,+1,.
3.6 g,(£5m) = £03 )00 0w eI (G ))
=ff ... f _1(J\))-
w ¥
A direct calculation shows that 4 F has the following character:
~J
n
c(%)
3.7 FResn = 1 (Fle (rsm)

A\

Since by 3.1 each ordinary irreducible representation of GoH 1s induced
from a product of such representations, it is more or less a matter
of the multinomial theorem that 3.5 (i) is true. The proof of (ii) is

more complicated.

In a similar way other properties carry over from the representations
of G to the representations of GnH., We need only to watth whether these
properties are invariant under formation of tensor powers, extension
to the inertia group and induction as well as that they hold for the
representations of the intersections HnSr also. Such properties are
for example the reality of characters, reality of representations,

monomiality of representations ete. (cf. ref. 18).
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Character tables of wreath products Smmsn, mn < 15, can be found in
ref. 19,20).

It is obvious that the representation theory of the wreath products
Smwsn already is considerably more complicated than that of Sn. While
an ordinary irreducible representation of Sn is characterized by a
single partition, an ordinary irreducible representation of Sm'\:Srl needs
for its characterization a |[P(n)|-tuple of pertitions. It should be
clear from this already that a lot of work still needs to be done until
the representation theory of Smmsn and more generally that of GoH is

as lucid as is nowadays the (ordinary) representation theory of Sn‘

We would like therefore to conclude this section with a problem which
is raised by applications of the representation theory of such wreath
products.

It was mentioned above that in the theory of chirality the hyperocta-
hedral groups Szmsn play an important role. A question which is asked
in this context (cf. ref. 11) is concerned with representations in-

duced from the following subgroup of S msn:

2

3.8 diagSZ-Sﬁ = {(f3m) | £:n + S, constant, e syt

2
The question asked is: What are the irreducible representations of
this subgroup 3.8 of Sz'\:Sn and how can we obtain the decomposition of
the representation induced into SZ'\:Sn by such an irreducible represen-
tation of 3.82

The first part is easy to answer. Since 3.8 is isomorphic to the
direct product:

s *,',.,
dlag82 Sn = S2 x Sn’

we obtain that each ordinary irreducible representation of this sub-

group is either of the form

3.9 1%,

where vy + n, and for each (f3n) e diagSQ-Sﬁ we have

3.10 [v1TC(esm)) == [v](m),

or the representation is of the form

3.11 Iv]~,

where again y + n,but for (fjim) e diagSZ-Sé we have now
3.12 [vy]7((£5m)) := sg;n_gl1 £(i)e [v] (m).

i=1

We would like to determine the decompositions of the induced represen-
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tations

Iv]* + s,v8, and [y]™ ¢ S,V

Denoting the irreducible representation 3.2 of S
[as8],

we have to determine those o and 8 which satisfy

([v]1% + 5,8 ,[038]) = ([o38] + aiagshes),[v]) # o.

If we denote by [a][B] the representation induced from [a]# [8] into
Sn’ then it is not difficult to see that for (f;n) ¢ diagSS-Sﬁ we
have

ZNSn by

n
[a38] ((£35m)) = sgn 1 £(i).[a] [B] (7) .
r+l

Hence if s is odd (even), then this restriction contains [y]- (contains
+y . .
[¥]™) if and only if

3.13 (Ta]6],[v]) * 0.

This together with the so-called Littlewood-Richardson-rule (ef. ref.
12,4.51) yields the desired result which is important for the appli-

cation to chirality (cf. ref. 21,§2B). It furthermore shows that this
can be generalized easily to groups Gan, G being abelian.

A numerical example is
[3,1°17 + 8,085 =[3,131] + [2, 12;1] + [1%;3) + [1%52,1] + [2;32,1]
+ [2;17] + [3,1°],
while
[(3,1%1* + spvsg =[133,1] + [152 ,12] + [3;1%] + [2,131%] + [2,1;2]
s L] E 2 3 b
+ [13;2] + [3,1 ].
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