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It is the aim of this lecture and the following one presented by E. 

Ruch to draw the attention of the audience to a certain partial order 

on the set P(n) of partitions of a given natural number n. 

This partial order in fact establishes a lattice structure on P(n) 

which turns out to be the underlying combinatorial structure of the 

representation theory of the symmetric group S n. This partial order 

can be described in terms of double-cosets of certain subgroups of Sn, 

in terms of intertwining numbers of specific representations of S 
n 

which are induced from such subgroups, as well as it can be expressed 

in terms of numbers of O-i-matrices with prescribed row and column 

sums and in terms of properties of Young-tableaus. 

These various ways of describing the partial order in question open the 

way to recognize this lattice structure on P(n) as basic for various 

applications. Applications in mathematics are in particular the repre- 

sentation theory of S n and of related groups like wreath products 

G~Sn, and certain existence theorems in combinatorics. This will be 

described here, while applications to sciences which are closely re- 

lated will be given by E. Ruch. 
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i. The diagram lattice 

Let n denote a natural number, i.e. n e N :: {1,2.3,...}. A partition 

of n is a finite sequence 

= (ml' .... eh ) 
with the following properties: 

(i) V i~i~h (~i e N) 

(ii) V l£i<h (~i ~ ~i+1 )' 

(iii) Z~ ~i = n . 

We shall sometimes abbreviate this by simply writing 

~ ~ n. 

The partitions of n=6 are for example: 

(6), (5,i), (4,2), (4,12)::(4,1,i), (32)::(3,3), (3,2,1), 

(3,i3):=(3,1,i,i), (23):=(2,2,2), (22,12):=(2,2,1,I), 

(2,14):=(2,1,I,i,i), (16):=(I,I,i,i,i,1). 

A partition ~ of n can be visualized by the corresponding Young-diagram 

[~], which consists of n nodes in h rows and ~i columns. The i-th row 

of the diagram consists of ~i nodes, and all the rows start in the same 

column: 

[(~] : m 

x x -...--...... x ~1 nodes 

x x ......... x ~2 nodes 

o o e . , e e a l e e o e e e  e e o , e e  

x x ... x ~h nodes . 

Because of ~i -> ~i+1 and as all the rows start in the same column, the 

lengths ~, l<i_<h'=~l, of the columns also form a partition of n, which 

we denote by ~'' 

~, := (~ .... ,~,) 

It is called the partition associated with ~. Its Young-diagram[~'] is 

obtained from [~] by simply reflecting [~] in the main diagonal, e.g. 

X ~  X X X X X X 

[~] :: [3,2, ~2] = ~ ~  yields [~,] = × x : [4,2,~]. 
x 

x 

We denote by P(n) the set of all the partitions of n: 

P(n) := {~ [ ~ ~ n}. 

The dominance order "4" is defined on P(n) with the aid of the partial 
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sums ~ i 
~i := ~l~u ' l~i~h. 

We put, if ~ = (~l,...,~h) ~ n, B = (B1,...,B k) ~ n: 

_~ B :<~> Wl<i< min{h,k} (o~ --< ~)'i 

The smallesin, where "~" is not a total order, is n:6. The order diagram 

of (P(6),~) looks as follows: 

(6) 

(32) < 

(23) < 

(5,1) 

(4~2)(4,12) 

(3,2,1) 

~22 (3'13) 

,12 ) 

(2,14 ) 

6 (1) 

It is important to characterize the situation when ~ ~ 8 and there is 

no y ~ n such that ~ 4 y 4 8, which we abbreviate by 

~S. 

The following lemma which characterizes this situation is easy to prove: 

1.1 Lemma: ~ ~ 8 holds if and only if there exist i and j such that 

(i) i < j, and 8 i = ~i+1, and 8j = ~j-1, while for all r # i,j 

we have 8 r = ~r' 

(ii) either i = j-i or ~. = ~.. m j 

In other words: ~ holds if and only if [~] is obtained from [~] by 

raising a node upwards from the end of the j-th row to the end of the 

i-th row, and this step is as small as possible: 

J 
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It is not difficult to show that 1.1 implies 

1.2 Lemma: ~ ~,8 ~ n (~ ~ 8 4=> 8' ~ ~'). 

Using the partial sums again, we can define an infimum ~ A 8 and a 

supremum ~ V 8 of two partitions e and B of n as follows (cf. ref. i): 

A 8 := y,where ~ := min{s ~ (i) 1 i '~ }' l~i<_max{h,k}, 

, o~, ~' (ii) ~ V 8 := 6,where ~ := min{ i '~ }, l~i<max{h',k'}. 

It was shown in ref. I that the following holds: 

1.3 Theorem: (P(n),~,A,V) is a lattice. 

We call this lattice the diasram lattice since the name "partition 

lattice" might be misleading, it is already a standard name for a dif- 

ferent lattice structure. 

This lattice is examined in ref. 2, where it is shown that the Moebius 

function on this lattice takes values O, +i only. 
m 

Partitions and the dominance order were hitherto used mainly in con- 

nection with graphs and the question, which partitions form the edge 

degree sequence of a graph (cf. ref. 3, chapter 6). But we shall not 

stress this fact here, since we are above all interested in charac- 

terizations of the dominance order in terms of group theory and re- 

presentation theory, in order to get a better insight into this com- 

binatorial structure (P(n),@) as well as into its applications. 

It may be mentioned that the discovery of this structure being the 

underlying combinatorial structure of a great part of representation 

theory of the symmetric groups is quite recent, although it is quite 

obvious already from the proofs used in the classical approaches. 
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2. Young-subgroups of symmetric groups 

We would like now to characterize partitions e and 6 of n, which 

satisfy 

~ 6. 

It is our aim to give four characterizations of this fact, one of them 

is a representation-theoretical one, another one is group-theoretical, 

and the last two of them are combinatorial characterizations. 

In order to do this we introduce a specific class of subgroups of the 

symmetric group S . 
n 

We consider the symmetric group Sn, acting on the set 

:= {1,...,n}. 

If 7 = (y1,...,yr) ~ n, then we can form partitions of the set n into 

pairwise disjoint subsets -in7 of order Yi' l~i~r, i.e. 
r 

n : U m Y ~ i%j (n~Nn7 n~ = - -i, = 0), Vi (I I ~i ) 
i=l -- --J --m 

Let now $71 denote the subgroup of Sn which consists of the ~i" elements 

l e a v i n g  each  e l e m e n t  of  n \ n ~  f i x e d ,  l < i < r .  We can  form t h e  p r o d u c t  S 
Y 

of all these subgroups: 
r 

S :: n $7 
i=1 m ' 

which is obviously isomorphic to the direct product 

r 

i~I Sri 

of the symmetric groups S . S is called a Young-subgroup correspon- 

ding to y. 

The classical development of the representation theory of S starts off 
n 

with an examination of certain representations of S which are induced 
n 

from specific one-dimensional representations of such Young-subgroups. 

In order to describe this, we denote by IS the identity representation 

of Sy, where each ~ ~ Sy is mapped onto the one-rowed matrix (i). By 

ASy we denote the alternating representation of Sy, where ~ c Sy is 

mapped onto (sgn~), sgnw=~1 being the sign of the permutation w. 

The representations of S n induced from IS and AS are denoted by 

IS ÷ Sn, and ASy ÷ S n. 
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If now ~ and 6 are partitions of n, we would like to evaluate the in- 

tertwining numbers (i.e. the inner products of the corresponding cha- 

racters) 

(IS ÷ Sn,IS 6 ÷ S n) 

and 

(IS ÷ Sn,AS 6 ÷ Sn). 

In order to do this, we apply Mackey's intertwining number theorem 

(cf. ref 4,(44.5)), which gives 

2.1 (IS ÷ Sn,IS 6 ÷ Sn) = Z (I(S~ ~ ~$6~-I),I(S~ ~ ~$6~-1)) , 

S~S 6 

if the sum is taken over the complete system of double-cosets S wS 6 of 

S and S 6 in S n. Furthermore we obtain 

2.2 (IS ÷ Sn,AS 6 ÷ Sn) = Z (I(S ~S6~-I),A(S r~$6~-1)), 
S~S 6 

if again the sum is taken over the complete system of double-cosets. 

Since the intersection S r~ ~S~ .-1 is a direct product of symmetric 

groups and as both I(S r~ ~ )  and A(S ~$6~-I), which are the 

identity representation and the alternating representation of this 

intersection, are irreducible, we have always 

(I(S ~ ~$6~ -1),I(S f~$6~-1)) : 1, 

while 

(I(S ~ ~S6~-I),A(S ~$6~-1)) : If', otherwise, if S ~S~ -1 : {1} 

Hence 2.1 shows that (IS~ ÷ Sn,IS 6 ÷ Sn) is equal to the number of 

double-cosets S ~S 6, while (IS ÷ Sn,AS 6 ÷ S n) is equal to the number 

of double-cosets with trivial-intersection-property 

2.3 S ~ ~$6~-I : {1}. 

This leads us to a closer examination of double-cosets of Young-sub- 

groups. Here we have a result of A.J. Coleman (ref. 5) at hand: 

2.4 Theorem: If ~ = (al,...,ah) and 6 = (61,...,6 k) are partitions of 

n with corresponding Young-subgroups S and $6, then peS n 

is contained in S ~S 8 if and only if for l~i~h and l~j~k 
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This theorem shows that the double-coset S wS B is characterized by the 

numbers zij :: In~ ~] --i ~ w[~ I, which we may put together into the 

hxk-matrix 

We now obtain from 2.4: 

2.5 Theorem: The mapping 

establishes a one-to-one correspondence between the set 

of double-cosets S ~S 8 and the set of hxk-matrices (zij) 

with nonnegative integral entries zij and prescribed row 

sums ~i : Zj zij and prescribed column sums Z i zij : 8j. 

The restriction of f to the set of double-cosets S wSBwith 

triVial-intersection-property 2.3 in particular establi- 

shes a one-to-one correspondence between the set of these 

double-cosets and the set of hxk-O-l-matrices with pre- 

scribed row sums ~i and prescribed column sums 8j. 

This theorem together with 2.1 and 2.2 demonstrates the equivalence of 

the problems of evaluating (IS # Sn,IS B % Sn) (or (IS ~ Sn,AS 8 ~ S n) 

resp.), counting the number of double-cosets S wS B (or those with 

trivial-intersection-property, resp.), telling the number of hxk-matri- 

ces with nonnegative integral entries (or hxk-O-l-matrices, resp.) with 

prescribed row sums ~i and column sums 8j. 

In order to connect this result with the diagram lattice of the prece- 

ding section we can use any one of the following two theorems (cf. 

ref. I and ref. 5): 

2.6 Theorem of Ruch/Sch~nhofer: If S and S 8 are Young-subgroups of S n 

which correspond to partitions ~ and B of n, then the in- 

tertwining number (IS~ + Sn,AS 8 ÷ S n) is nonzero if and 

only if ~ 4 8' 

2.7 Theorem of Gale/Ryser: If ~ = (~l,...,~h) and B = (81,...,~ k) are 

partitions of n, then there exist O-l-matrices with row 

sums ~i and column sums Bj if and only if ~ ~ 8'. 

The considerations made above show clearly that these two theorems are 

equivalent, although they sound quite different. The links between them 

are Mackey's intertwining number theorem and Coleman's characterization 

of the double-cosets of Young-subgroups. 
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The Gale/Ryser theorem is one of the most important existence theorems 

in combinatorics. It serves in particular for proofs of the existence 

of incidence structures. A typical and easy example is a necessary and 

sufficient condition for the existence of tactical configurations with 

prescribed parameters v,b,r and k. (A tactical configuration with para- 

meters v,b,r and k is a triple (V,B,I) consisting of a set V of verti- 

ces, a set B of blocks, and an incidence relation I C VxB such that 

IVI = v, IBI = b, and where each v ~ V is incident with exactly r 

blocks, while each b ~ B is incident with exactly k vertices, so that 

in particular v.r = b.k holds.) 

The incidence matrix of such a tactical configuration is a vxb-O-l-ma- 

trix with row sums all equal to r and column sums all equal to k. The 

theorem of Gale and Ryser says that such a matrix (and hence also a 

tactical configuration with parameters v,b,r and k) exists if and 

only if we have ~ ~ B', where ~ := (r v) and B := (kb), i.e. if and 

only if 

or equivalently (cf. 1.2): 

(r v) 4 (kb) , = (bk), 

(k b) ~ (rk) ' = (vr). 

Hence by the Gale/Ryser theorem a tactical configuration with parame- 

ters v,b,r and k exists if and only if v.r = b.k and r ~ b, or equiva- 

lently if and only if v.r = b.k and k ~ v. 

There are many other existence theorems in combinatorics for the proof 

of which the Gale/Ryser theorem is the main tool (cf. e.g. ref. 6/7). 

The Ruch/Sch~nhofer theorem gives a deeper insight into the decompo- 

sition of the induced characters IS ÷ S which we introduced at the 
n 

beginning of this section. 

A first consequence of this theorem is 

(IS ÷ Sn,AS , ÷ S n) ~ O. 

We obtain in fact more than that, namely 

2.8 (IS ~ Sn,AS , ÷ Sn) = 1, 

if we notice that there is exactly one O-l-matrix with row sums ~i and 

column sums ~ and apply the equality of the intertwining number and 
J 

the number of such O-l-matrices. 2.7 means that these two induced re- 

presentations have a uniquely determined irreducible constituent in 

common, which they both contain with multiplicity i. We denote this 

constituent by [~] so that we obtain by a slight abuse of the notation: 
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. : ÷ S ~ ASs, + S . 2.9 [a] : IS n n 

(We notice that [m] does depend only on the partition ~ of n and 

neither on the partition of n which gives S nor on the partition of 

n which gives S ,, for all Young-subgroups S which correspond to a 

given y ~- n are conjugate subgroups of S n.) 

In order to show that the system 

2.10 {[~] I a ~ n} 

consists of pairwise inequivalent representations, so that it is a 

complete system since it is of maximal order, one proves the following 

2.11 (IS a + Sn,[8 ]) > 0 ~ ~ .  

T h i s  i s  c l e a r  f rom t h e  t h e o r e m  o f  R u c h / S c h S n h o f e r ,  f o r  2 . 9  shows t h a t  

( I S  + S n , [ ~  ] )  > 0 i m p l i e s  ( I S  ÷ Sn,AS8,  + S n)  > O, so t h a t  by 2 .6  

we o b t a i n  ~ ~ 8 as  i t  i s  s t a t e d .  

I n  o r d e r  t o  c o m p l e t e  t h e  p r o o f  of  t h e  f a c t  t h a t  2 . i 0  i s  a c o m p l e t e  

system, it remains to show that if [~] and [8] are equivalent, then 

= 8. But this is easy to verify, for in the case when [m] is equi- 

valent to [8] we have 

I : (IS ÷ Sn,[~ ]) : (IS + Sn,[8 ]) : (IS 8 + Sn,[8 ]) : (IS 8 + Sn,[~]) , 

so that again by the Ruch/Sch6nhofer theorem both 

_~ 8 and 8 ~_ ~ , 

and hence ~ = 8. 

We now introduce the natural lexico~raphic order "<" on the set P(n) 

of all the partitions ~of n by putting 

< 8 :~-> 3 i (~1 = 81''''' ~i-I : 8i-I' ~i < 8i)" 

This is obviously a total order, furthermore it is clear that 

2.12 V~,8 ~- n (~ _4 8 =~ ~ _< 8 ). 

We put the multiplicities 

m 8 :: (IS ÷ Sn,[8 ]) 

together into a matrix Mn, the rows and columns of which belong to the 

partitions of n with respect to the lexicographic order: 

[i n ] . . .  [8] . . .  In] 

• : ( l n )  n 

: IS + S Mn : "'" tomb "'" . ~ n 
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The Ruch/Sch~nhofer theorem tells us that M n is an upper triangular 

matrix with i's along the main diagonal (el. 2.8/9/11): 

2 . 1 3  Mn 1 

and i t  s a y s  t h a t  m B ~ 0 i m p l i e s  ~ ~ g. I t  i s  t h i s  f a c t  w h i c h  we h a v e  

i n  mind s a y i n g  t h a t  t h e  d i a g r a m  l a t t i c e  i s  t h e  u n d e r l y i n g  c o m b i n a t o r i -  

a l  s t r u c t u r e  o f  a g r e a t  p a r t  o f  t h e  r e p r e s e n t a t i o n  t h e o r y  o f  t h e  

s y m m e t r i c  g r o u p .  ( L a t e r  t h a n  i n  r e f . i t h i s  was a l s o  n o t i c e d  by r e f .  

8 , 9  and i O . )  

The c l a s s i c a l  a p p r o a c h e s  u se  a w e a k e r  a r g u m e n t ,  t h e y  o n l y  u s e  t h e  

triangularity of M n together with the fact that there are 1's along 

the main diagonal. They prove this partial result along an examina- 

tion of idempotents. 

This approach leads us to Young-tableaus and we would like to show 

that a closer examination yields a characterization of ~ ~ ~ in terms 

of Young-tableaus. We give a short description of this since this 

characterization of the partial order turns out to be useful for a 

better understanding of various applications in sciences (cf. ref. i). 

A Young-tableau t ~ with diagram [~] arises from [~] by replacing the 

nodes "×" of the diagram by the elements i ~ n : {i,...,n}. Replacing 

the nodes by these elements in their natural order, we obtain for 

example 

~i+i ~i+2 ... ~i+~2 
t I := . . . . , . , . . . . . . . . . .  

, , . . . . . , . .  n 

establish partitions of the set n. Let H i The rows and columns of t I _ 

and V I denote the corresponding Young-subgroups, the horizontal and 

the vertical group of t i. 

The group algebra QS n of S n over the field Q of rational numbers con- 

tains the elements 

i := Z sgnp-p :: Z ~ , and ~ 1  

~ H i ~ V 1 p ~  

These elements are essentially idempotent, the generated left ideals 

afford the representations IS~ + S n and ASs, + S n. 

The classical argument showing that M n is triangular now runs as 

follows. It is shown that for ~ > B we have 
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~ 1  = O, 2.14 ~ QSn B 

which implies by general representation theory 

(IH 1 + Sn,AV ~ ÷ S n) : (IS~ + Sn,ASB,÷ S n) : O. 

In order to prove 2.14 we need only to show that for each ~ e S n we 

have 
i ~/1-i = O. 2 . 1 5  ~ 

~ -1 is the vertical group of the tableau ,t~, defined by 

. . . . . . . .  B if t : ...i... , then ~t I :: 

. . . o .  °, ° . . ,  • • 

If now ~ >B, then there exist two elements of n, say i and j, which 

in the same row and in ti~ in the same column, so that in occur in t 1 

particular 2~1 =~1(1~ + (ij)), and 2 ~  -1 = (i - (ij))~[~ -1 

hence 
~1~18v-1 : ~ (1 + (ij))(1 - (ij))~-1 

a n d  we a r e  d o n e .  

We n o t i c e  t h a t  t h e  m a i n  s t e p  w a s  a n  a p p l i c a t i o n  o f  t h e  f a c t  t h a t  i f  

> 8 ,  t h e n  f o r  a n y  t w o  t ~ a n d  t 8 t h e r e  e x i s t  t w o  e l e m e n t s  i , j  s n ,  

w h i c h  o c c u r  i n  t ~ i n  t h e  s a m e  r o w  a n d  i n  t 8 i n  t h e  s a m e  c o l u m n .  

This leads us to the following definition. If t a is a tableau with 

diagram [a], 8 another partition of n, then we denote by 

D(ta,B) 

the set of all the Young-tableaus t 8, where any two i and j of n, 

which occur in t ~ in the same row, occur in t 8 in different columns. 

Correspondingly we denote by 

D(~,t 8 ) 

the set of all the Young-tableaus t ~, where any two i and j of n, 

which occur in t 8 in the same column, occur in t ~ in different rows. 

It is trivial that D(t~,8) ~ ~ is equivalent to D(~,t 8) $ ~. Less 

trivial is, that this is also equivalent to ~ _~ B • It is easy to 

show that D(t~,8) $ 0 implies ~ _4 8 , the other direction is shown 

by describing an algorithm which yields a t 8 c D(t~,8). 

This allows us to sum up as follows: 

2.10 Theorem: If ~ = (~l,...,~h) and 8 = (61,...,8 k) are partitions 

of n, S~ and S 8 corresponding Young-subgroups and t ~ 

and t 8 Young-tableaus with diagrams [~] and [8], re- 

spectively, then the following properties are equiva- 

lent : 
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(i) ~ ~ 8', 

(ii) B ~ ~', 

(iii) There exist double-cosets S ~S B which satisfy 

S ~ ~S 7 -1 = {i} . 
B 

(iv) There exist O-i-matrices with row sums ml,...,ah 

and column sums 81,...,8 k. 

(v) D(ta,8') ~ ~ , 

(vi) D(~,tS') ~@. 

The equivalence (i) <=> (ii) is more or less trivial by 1.1, the 

equivalence (iii) <=> (iv) was shown above, trivial is also (v) ~=> (vi) 

as well as (iv) => (i) and (v) =~ (i). 

In order to prove the rest, one may use Ryser's algorithmic proof of 

(i) => (iv) and conclude showing (i) => (v) by describing an algorithm 

which allows to construct from t ~ a t B ~ D(t~,8'). 
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3. A generalization 

We saw that Young-subgroups S , y a partition of n, play an impor- 
Y 

tant role in the representation theory of the symmetric group Sn, and 

that some of the properties of the induced representations IS ÷ S 
y n 

reflect the structure of the diagram lattice (P(n),~). These proper- 

ties show up again in the applications, say in the theory of chirali- 

ty of molecules (cf. ref. I, 11), where symmetric groups and certain 

generalizations are considered. 

These generalizations which we have in mind are the so-called hyper- 

octahedral groups S2~Sn, a special case of the wreath product G~H 

of a group G with a subgroup H of S n. This group $2~S n shows up in the 

theory of chirality when a skeleton with n numbered sites is consi- 

dered to whic~ ligands may be attached, this group then is the group 

of all combinations of ligand permutations with site reflections 

(ref. 11, p. 19). 

The wreath product G~H consists of all the ordered pairs 

(f;~), 

where f is a mapping from n into G, and ~ ~ H. For two such mappings 

f,g:~ ÷ G and a w ~ H we define mappings fg, f-l, g~ and e from 

into G by putting for each i E n: 

fg(i) := f(i)g(i), f-l(i) := f(i) -1, g (i) := g(w-l(i)), e(i):=l G. 

Then G~H forms a group subject to the multiplication 

(f;~)(g;p) := (fgw;wp). 

This group has the following normal subgroup: 

G* := {(f" ) 1 f:n ÷ G} 'IS n 

which is isomorphic to the n-fold direct product ~G of G with itself. 

We call G* the base group of G~H. 

G ~ has a complement isomorphic to H: 

H' : =  {(e;~) [ ~ E H} • 

Since G ~ is a normal subgroup of G~H, we can very nicely apply 

Clifford's theory of representations of groups with normal subgroups 

in order to develop the representation theory of G~H once the repre- 

sentation theory of G is known to a certain extent. We need a short 

description of how this works (for more details c~. ref. 12, 13). 

Let F denote a representation of G over the complex field C with re- 

presentation space V. If n denotes a natural number, then we obtain 
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an ordinary representation of G~S with representation space the ten- 
n 

sor power 

n 

® V :: V ®C V @C "~''" GC V, 

n f a c t o r s ,  by simply p u t t i n g  

(f;~)(v i (~ ® v n) :: f(1)v "'" -i(i ) 

for each v. e V. 
i 

We denote this r e p r e s e n t a t i o n  by 

~f 
@F, 

n 

... ~ f(n)v _l(n) , 

since it extends the n-fold outer tensor power ~ F of F with itself, 

which is a representation of the base group G ~ of G~S . 
n 

If furthermore D is a representation of H, then D', defined by 

D'((f;~)) := D(,), 

yields also a representation of G~H, a third one is therefore the inner 

tensor product 

@F ®D'. 

It follows from considerations in ref. 12 that if G is a finite group, 

each ordinary irreducible representation of G~H is of the form 

3.1 (R G S') ÷ G~H, 

where R is the restriction of an outer tensor product of the form 
h T~. 

R : ~ ( ~F i) 
i:i 

F. suitable ordinary irreducible representations of G, which is a re- 
1 

presentation of G~S < G~Sn, ~ ~ n, the restriction is to the subgroup 

G~(H ~ S ). 

S is an ordinary irreducible representation of the intersection H ~S 

of H with the Young-subgroup S . 

Hence Young-subgroups occur in the representation theory of wreath 

products G~S n as inertia factors, i.e. as little groups of the first 

kind in the terminology of ref. 14. 

A special case is the wreath product S2~Sn, the so-called hyperoctahe- 

dral sroup which was mentioned above. In this case the only irreducible 

representations of G=S 2 are [2] and [12], so that each ordinary irredu- 

cible representation of $2~S n is of the form 
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3.2 
T 

[ i  2]) ® ([(~] :~ [13])') ÷ $2~S n 

: [(41[a] ® [ ~ ] ' ) ~  (~[i  2] ® [B] ' ) ]  + SR~S n, 

where r+s:n and ~ ~ , B ~ s. 

More generally for S ~S : Let i k ,..., a be partitions of m and assume 
m n 

i ~J for all i<j, then a complete system of ordinary irreducible 

representations of Sm~S n is given by the set of representations of form 

3.3 ~(~1 [ 1] ~[B1],)~... ~(~k [ k] ~ [Bk],)) + Sm~Sn , 

where n.=n and B i ~ n.. 
1 1 

The question arises which of the properties of the Young-subgroups S 
Y 

and their representations which are relevant for the representation 

theory of S n the corresponding subgroups G~S of,G~S n and their repre- 
Y 

sentations do also possess. 

The most important properties of the S and the representations IS ÷S 
y y n 

were described b y  t h e  m a t r i x  M n = (m B ) .  I f  

~B 
d e n o t e s  t h e  v a l u e  o f  t h e  c h a r a c t e r  o f  I S  ÷ S o n  t h e  c l a s s  o f  e l e m e n t s  

~ n 

w i t h  c y c l e - p a r t i t i o n  g ~ n ,  a n d  i f  

~B 
d e n o t e s  t h e  v ' ~ u e  o f  t h e  c h a r a c t e r  o f  [~]  o n  t h e  s ame  c l a s s ,  t h e n  b y  

d e f i n i t i o n  o f  M we h a v e  f o r  t h e  m a t r i c e s  
n 

X n :: (~) and E n :: (~> 

(X i s  t h e  c h a r a c t e r  t a b l e  o f  S I )  t h e  f o l l o w i n g  e q u a t i o n :  
n n 

3.4 X n : Mnl. En . 

S i n c e  M h a s  d e t e r m i n a n t  i ,  M - 1  i s  a m a t r i x  o v e r  t h e  r i n g  Z o f  t h e  
n n 

r a t i o n a l  i n t e g e r s .  H e n c e  b y  3 . 4  e a c h  c h a r a c t e r  ~ o f  S n i s  a Z - l i n e a r  

c o m b i n a t i o n  o f  t h e  c h a r a c t e r s  ~ w h i c h  a r e  t h e  c h a r a c t e r s  o f  t r a n s i t i v e  

p e r m u t a t i o n  r e p r e s e n t a t i o n s .  

Thus the character ring of S n possesses a Z-basis consisting of transi- 

tive permutation characters. 

This is known since the time of Frobenius. That the same is true for 

hyperoctahedral groups was shown in ref. 15, ref. 16. The corresponding 

results for the most general case G~H (ref. 17) read as follows: 
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3t5 Theorem:Let G denote a finite group and H a subgroup of S n. 

(i) If the characters of G and the characters of all the 

intersections H~S of H with Young-subgroups S of 
Y 

S n are Z-linear combinations of permutation charac- 

ters, then the same holds for the characters of G~H. 

(ii) If the character ring of G has a Z-basis of transi- 

tive permutation characters, then the same holds for 

the character rings of the groups G~S n. 

The proof is quite long so that we intend to sketch only those aspects 

of it, which are of general interest. 

The basis for all character theoretical considerations concerning ,~ 
n 

wreath products is a result on the character of the representation ~ F 

which will be described next. 

If ~ c S n has the following decomposition into pairwise disjoint cyclic 

factors: 
c ( ~ )  

= ~ (j ~(j ) ... I -l(j )), 

~= 1 

i -1 )) and the then we associate with each cyclic factor (Jr "'" ~ v (Jr 

mapping f:~ ÷ G the cycle-product gv(f;~) defined by 

3.6 g~(f;~) := f(jv)f(~-l(jv))...f(w-lv+l(jv)) 

= f f . . .  f i~ ~. ~ . 
w 1 - 

A d i r e c t  c a l c u l a t i o n  shows t h a t  ~ F has the  f o l l o w i n g  c h a r a c t e r :  

c(~) ¢ F( x F ( g (  
3.7 × (f;~)) : ~ f;~)) 

v:1 

Since by 3.1 each ordinary irreducible representation of G~H is induced 

from a product of such representations, it is more or less a matter 

of the multinomial theorem that 3.5 (i) is true. The proof of (ii) is 

more complicated. 

In a similar way other properties carry over from the representations 

of G to the representations of G~H. We need only to wa~d~ whether these 

properties are invariant under formation of tensor powers, extension 

to the inertia group and induction as well as that they hold for the 

representations of the intersections H~S T also. Such properties are 

for example the reality of characters, reality of representations, 

monomiality of representations etc. (cf. ref. 18). 
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Character tables of wreath products Sm~Sn, mn ~ 15, can be found in 

ref. 19,20). 

It is obvious that the representation theory of the wreath products 

Sm~S n already is considerably more complicated than that of S n. While 

an ordinary irreducible representation of S n is characterized by a 

single partition, an ordinary irreducible representation of S uS needs 
m n 

for its characterization a IP(n)I-tuple of pertitions. It should be 

clear from this already that a lot of work still needs to be done until 

the representation theory of Sm~S n and more generally that of GmH is 

as lucid as is nowadays the (ordinary) representation theory of S n. 

We would like therefore to conclude this section with a problem which 

is raised by applications of the representation theory of such wreath 

products. 

It was mentioned above that in the theory of chirality the hyperocta- 

hedral groups $2~S n play an important role. A question which is asked 

in this context (cf. ref. 11) is concerned with representations in- 

duced from the following subgroup of S2~Sn: 

3.8 diagS~-S'n = {(f;~) I f:n_ ÷ S 2 constant, ~ ~ Sn}. 

The question asked is: What are the irreducible representations of 

this subgroup 3.8 of $2~S n and how can we obtain the decomposition of 

the representation induced into $2~S n by such an irreducible represen- 

tation of 3.8? 

The first part is easy to answer. Since 3.8 is isomorphic to the 

direct product: 

diagS~.S'n ~ S 2 x Sn, 

we obtain that each ordinary irreducible representation of this sub- 

group is either of the form 

3.9 [Y] +, 

where y ~ n, and for each (f;~) ~ diagS2"S'n we have 

3.10 [yJ+((f;~)) := [y](~), 

or the representation is of the form 

3-11 [y] -, 

again y ~ n,but for (f;~) E diagS~-S n' we have now where 
n 

3.12 [y]-((f;~)) :: sgn ~ f(i),[y](~). 
i=1 

We would like to determine the decompositions of the induced represen- 



70 

rations 

[~]+ ÷ $2~S n and [y]- ÷ $2~S n. 

Denoting the irreducible representation 3.2 of $2~S n by 

5;~], 
we have to determine those ~ and 8 which satisfy 

• " s',[~]--+) ¢ o ([y]--+ + S2~Sn,[~;B ]) : ([~;8] + dlagS 2" n 

If we denote by [~][B] the representation induced from [~]~ [B] into 

Sn, then it is not difficult to see that for (f;~) e diagS~-S'n we 

have 
n 

[m;8] ( ( f ; ~ ) )  : sgn ~ f ( i ) .  [m] [B] (~) 
r+1 

Hence if s is odd (even), then this restriction contains [y]- (contains 

[~]+) if and only if 

3.13 ([~3 ~B], D]  ) • o .  

This together with the so-called Littlewood-Richardson-rule (cf. ref. 

12,4.51) yields the desired result which is important for the appli- 

cation to chirality (cf. ref. 21,§2B). It furthermore shows that this 

can be generalized easily to groups G~Sn, G being abelian. 

A numerical example is 

[3 ,12]  - ÷ $2~S 5 : [ 3 , 1 ; 1 ]  + [2 ,12 ;1 ]  + [12;3]  + [12 ;2 ,1 ]  + [2 ;2 ,1 ]  

+ [2;13]  + [3 ,123,  

while 

[3 ,12]  + ÷ $2~S 5 : [ 1 ; 3 , 1 ]  + [1 ;2 ,12  ] + [3;12 ] + [2 ,1 ;12  ] + [2 ,1 ;2 ]  

+ [13;2] + [ 3 , 1 2 ] .  
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