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Abstract: We derive non-determinantalapproximations to the Schr~dinger 
time-evolution in a necessarily truncated subspace, that allow for a 
flux of probability between the subspace and the excluded space. 
A second-order time-differential equation in the subspace and a time- 
dependent optical potential are studied in a number of examples. 

I. INTRODUCTION 

Going beyond the Time-Dependent Hartree Fock approximation will gene- 

rally require a big step backward in the dimensionality of the space 

within which the time evolution can be treated. While the time-evolu- 

tion of a TDHF determinant is generally not confined to a predeter- 

mined subspace of the total Hilbert space, non-determinantal approxi- 

mations to the time-dependent Schr~dinger solution will necessarily 

be restricted to a finite basis of small enough dimension to make the 

computation feasible. The truncation of the Hilbert space of the system 

to a small finite subspace leads to the problem of the coupling between 

the selected subspace and the excluded space, and how to account for 

the corresponding flux of probability between the spaces. 

In the present paper we study non-unitary approximation methods that 

allow for a flux of probability but are completely defined and solvable 

within the subspace, such that the computation requires no information 

about the neglected space. The approximations are related I'2) to a 

series expansion of the tgue subspace projection of the Schr~dinger 

time-evolution operator, augmented in some cases by an "optical" time- 

dependent imaginary potential. 
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2. TRUNCATION OF THE SCHRODINGER PROBLEM 

In stationary quantum mechanics many approximation methods consist in 

truncating the Hilbert space of the system to a limited subspace, and 

then solving the truncated problem in the subspace rather than dealing 

with the original Hamiltonian in the full space. A similar truncation 

procedure, when applied to the time-dependent Schr~dinger equation, 

however, leads to unphysical results because the solution of the 

truncated problem is unitary with respect to the truncated subspace, 

and does not allow for any flux of probability between the selected 

subspace and the rest of the Hilbert space. Therefore the solution of 

the ordinary time-dependent Schr~dinger equation in a truncated sub- 

space artificially conserves all the initial probability (and mass, 

charge,energy etc.) within the subspace for all times, and thus differs 

qualitatively from the non-unitary subspace part of the true Schr~ding- 

er time-evolution. In general this property is the more undesirable 

the higher the truncation because the subspace probability will remain 

constant irregardless of how small the selected subspace is. For in- 

stance, the extreme truncation of the time-dependent Schr~dinger-equa- 

tion to dimension I would always lead to no time evolution at all (a- 

part from a phase) whereas the true Schr~dinger solution will in gene- 

ral immediately generate flux into states other than the initial state. 

3. SECOND-ORDER SUBSPACE TIME-EVOLUTION EQUATION 

We consider a Hilbert space that is devided into two orthogonal sub- 

spaces with corresponding projection operators P and Q, 

p2 = p, Q2 = Q, p + Q = I, PQ = 0 = QP (I) 

where P denotes the selected subspace and Q the excluded space. 

In order to obtain an approximation to the time evolution in the sub- 

space we rewrite the Schr~dinger equation 

~t ~(t) = H ~(t) i (2) 

as a second-order equation 

(i n ~t )2 ~(t) = H 2 ~(t) , (3) 

project onto the P-space and insert p2 + Q2 = I, 
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p H2~ = p H2(p2 + Q2)~ = (p H2p)p~ + (p H2Q)Q~. (4) 

This yields for the P-space 

_n2 __2 2 ~p(t) = (H2)pp ~p + (H2)pQ ~Q (5) 

Bt 2 

where the notation in analogy to Feshbach's optical model 3) has been 

used, 

(H2)pQ = P H2Q, ~p = P~ etc. (6) 

Equation (5) describes the exact time evolution in the P-space for a 

given initial state and an initial time derivative as specified by 

eq. (2). The approximation consists in neglecting the ~Q(t) term in 

eq. (5). In practical cases the P-space will always be selected such 

that it contains the initial state, ~Q(O) = O. Therefore the ~Q(t) 

term will vanish during the first time step and it should be reasonable 

to neglect it for sufficiently small intervals of time. This yields 

the second-order subspace time-evolution equation 

_~2 2 2 ~p(t) = (H 2) ~p(t) 7a) 
Bt 2 PP 

with the initial conditions 

~(t=O) = ~p(t=O), ~Q(t=O) = 0 7b) 

and 

i ~ Tt ~p(t) = Hpp ~p(t) (t=O). 7c) 

In general Hpp and (H2)pp do not commute, and the approximate subspace 

time-evolution (7) is non-unitary as desired. In particular the 

exact flux of probability between the P- and Q-space is approximated 

rather accurately in many cases. This will be demonstrated below in 

a number of examples. 

We note that a second (or higher order) equation is essential for a 

non-unitary solution. The ordinary time-dependent Schr~dinger equation 

(2), when truncated in the same way as eq. (5) leads to the truncated 

Schr~dinger equation 

i ~ ~t ~p(t) = Hpp ~p(t) (8) 

with the undesirable unitary solutions. 
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4. SOLUTION OF THE SUBSPACE TIME-EVOLUTION EQUATION 

Although the second-order subspace time-evolution equation (7) allows 

for a flux of probability out of the subspace (and back), it is com- 

pletely defined within the subspace. In particular, the matrix elements 

of (H2)pp can be computed in any P-space basis without information 

about the neglected Q-space. Equation (7) can easily be solved in the 

P-space representation that makes (HZ)pp diagonal. Thus the solution 

of eq. (7) requires one matrix diagonalization for all times, a 

numerical effort that does not exceed the one necessary for solving 

the (inappropriate) truncated Schr~dinger equation (8). 

For short time intervals an expansion to second order in time with the 

first and second derivative specified by eq. (7) is superior to dia- 

gonalizing (H2)pp, 
~p(t) = [I - i Hpp t/~ -(H2)pp t2/2~2]~p (t=O) + ~ (t3). (9) 

Such an expansion for short time steps may be important, e.g. for 

describing the first contact in a heavy-ion collision, or for an ex- 

plicitely time-dependent Hamiltonian (e.g. in a semiclassical collision 

study with the center-of-mass motion given along some path). 

5. EXAMPLES 

5.1Lipkin model 

As a first example we consider the Lipkin model 4-7) , a popular test 

case for time-dependent approximations to the exact Schr~dinger so- 

lution. The model describes an exactly solvable many-body system 

consisting of N fermions on two N-fold degenerate levels evolving in 

time under the Hamiltonian 

~ a a ~  + V ~  + + (IO) 
H = ~ pa a ap~ ~ PP'~ apa ap,~ ap,_~ ap_ O 

with the creation and anihilation operators of the single particle 

states Ip,a> where p = I,...,N labels the degenerate states of both 

levels a = ±I. 

In the example of fig. I the system consists of 8 particles. The full 

Hilbert space of the system has dimension 9 and the subspace is 

truncated to dimension 5 (IJM>=IJ-J> ..... IJO>in the standard basis). 
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Fig. 2: Gaussian 100 x 100 Hamiltonian truncated to 10 x 10. 
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The initial state has M=-J and the parameter set is e=1, V=I. The 

figure shows the loss of probability and the loss of energy out of 

the subspace as a function of time for both the exact Schr~dinger time 

evolution (a) and the subspace approximation (b) of eq. (7). The 

approximation (b) remains rather accurate over a time interval during 

which a sizable flux of probability and energy out of the subspaoe 

occurs. This is much superior to the truncated Schr6dinger calculation 

(d) of eq. (8) which results in no loss of probability and energy for 

all times. Other examples with different parameter sets and different 

initial conditions lead to qualitatively similar results. 

5.2 Gaussian matrix parametrization 

We have studied 2) the behaviour of the subspace time evolution approxi- 

mations for a number of schematic Hamiltonian matrices with exponential 

diagonal level density and a Gaussian fall-off for the off-diagonal 

matrix elements with or without random signs. This parametrization 

comprises constant and diagonal Hamiltonians, C-numbers and interme- 

diate cases. 

In the example plotted in fig. 2a the exact solution for a 100 x 100 

Hamiltonian matrix is compared with the P-space approximation (7) for 

the first 10 x I0 components for an initial state peaked at the second 

and third basis state in the P-space. Here the probability in the P- 

space, as described by the non-linear approximation (b), is remarkably 

close to the exact result (a), even though a substantial flux of pro- 

bability out of the P-space occurs. For instance, after a loss of 30% 

of the initial P-space probability the non-linear subspace approxima- 

tion (7) remains within I% of the exact result. This is clearly super- 

ior to the truncated result (d) which (arbitrarily) conserves the P- 

space probability. Although the non-linear approximation becomes less 

accurate for longer time intervals it still reproduces the qualitative 

behaviour of the exact solution. In particular a flux back from the 

neglected space into the P-space occurs almost simultaneously in the 

exact (a) and approximate (b) result. 

The flux of probability between P- and Q-space is associated with a 

similar flux of energy, that is shown in fig. 2b. Here again the non- 

linear subspace approximation (b) is much superior to the truncated 

result (d). It is rather accurate over a sizable interval of time 

(e.g. 3% at an energy loss of 30%). Other cases are discussed in ref.2. 
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5.3 Exactly solvable Hamiltonians 

For any Hamiltonian with the property 

(H2)pQ = 0 = (H2)Qp (11) 

the subspace approximation (7) leads to an exact solution in the P- 

space. In order to demonstrate that this class of Hamiltonian matrices 

comprises cases with substantial flux of probability between the 

spaces we consider the particularly simple example 

(Hpp)mn =-/exp (-~n) ~mn =-(HQQ)mn' (12) 

(HpQ)mn = Y 6mi, u = (HQp)nt n. (13) 

Here the P-space probability can be given analytically as a function 

of time. The result for one set of parameters (~,Y) and different ini- 

tial states ~ is given in figure 3. It shows that the probability tends 

to oscillate in time between the P- and Q-space. The Q-space probabi- 

lity can be quite large (even though the spaces are disconnected with 

respect to the second order equations and ~Q(O) =O). Since in the 

case we have considered, the second-order approximation is zxact, it 

is very much better than the usual truncation procedure (which would 

arbitrarily conserve the subspace probability and energy for all times). 

P -  $ 1 ~ a c s  ~ r o i l a b i l i t y  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  d . . . . . . . . . . . . . . . . . . . . . . . .  
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Figure 3: Coincidence of 
exact and approximate so- 
lution in the case 
(H2)pQ = O, for different 

initial distributions B, 
and a 50% truncation to 
dimension 11. Curve d is 
the solution of the 
Schr~dinger equation in 
the subspace. 

i l i l l l l l l  i 

6. PROJECTION OF THE TIME-EVOLUTION OPERATOR 

An explanation why the approximation (7) is in many cases rather close 

to the exact time evolution in the subspace can be given in terms of 

the time-evolution operator 
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c,o 

U(t) = exp (-i H t/K) = ~ (-i t/~)n/n!H n. (14) 
n=O 

The application of the projection and insertion of p2 + Q2, similar to 

eq. (4) , yields 

co 

~p(t) = ~ (-i t/t[)n/n! (Hn)pp ~p(O) (15) 
n=O 

for an initial state ~(0) = ~p(O) in the P-space. This is the exact 

P-space time evolution for all times. Up to second order in time the 

expansion (15) is identical to the approximation (9) of sect. 3. Thus 

this approximation can be viewed as a first step away from the unitary 

solution of the truncated Schr~dinger equation (8) towards the exact 

non-unitary solution (15) for the first time step. It turns out that, 

in many cases, the inclusion of the H 2 term alone already leads to a 

rather accurate approximation of the flux of probability into the Q- 

space. 

7. TIME DEPENDENT "OPTICAL" POTENTIAL 

The success and wide-spread use of the optical model to correct for 

the excluded channels in stationary scattering theory has motivated us 

to study if a similar, but time dependent, "optical" potential 7) can 

be used to account for the flux of probability out of the truncated 

subspace in a time-dependent calculation. 

The problem consists in adding to the truncated Hamiltonian an appro- 

priate imaginary time-dependent matrix i W(t) such that the "optical" 

solution I~> of the modified subspace Schr6dinger equation 

i ~ ~ I~ (t)> = [Hpp + i W(t)] [~> (16) 

fits the subspace part of the exact solution }~(t)> as closely as 

possible 

l~(t)> = p I~(t)> . (17) 

Figure 4 shows an example of such an optical potential fit for a sche- 

matic heavy-ion model. Here the Hamiltonian 

H = H (I) + H (2) + V(I,2) (18) 
sp sp 
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Figure 4: Optical potential 
fit for a schematic time-de- 
pendent heavy-ion collision 
model. 

consists of single-particle (sp) terms for each ion and a two-body 

interaction term. The single-particle energies are taken to have a 

level-density form 

H (I) {i> = V I exp (-i/a I) i> (18a) 
sp 

and 

H (2) 
sp lJ> = V2 exp (-j/a 2) j> , 

and the interaction matrix is defined in the product basis 

(I 8b) 

i> I J > as 

<ijjVlkl> = V ° exp {-(lij-kl) /ao2)} (19) 

with the parameters V o, V I, V 2 and ao, al, a 2. The interaction is 

chosen such that the matrix elements should be large between two ion 

states li>lj> and Ik>ll> that are either particularly simple (e.g. 

low excited) or both very complicated (e.g. highly excited), and small 

for combinations of simple and complicated states. 

We have studied a number of different functional forms for the optical 

potential iW that may lead to a satisfactory description of the time- 

evolution of the system. It turns out that a rather simple parametri- 

zation is already sufficient in many cases: The matrix iW can be 

chosen diagonal in the subspace "energy" representation 

Hppln> = Cnln> (In> E P space) (20) 

and linear in time, i.e. 
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<n'liWin> = -i~ (a n + 8n t)6n, n , (21) 

where a n and Bn are the fit parameters of the optical potential. 

In the example plotted for a statistical initial distribution the full 

space of dimension 36 (i.e., 6 levels in each ion) is truncated to 

dimension 16 (i.e. the first 4 levels in each ion). During the time 

interval of fig. 4 the probability in the subspace decreases from 

initially 1OO% to about 30% before a flux of probability back into the 

selected subspace sets in. The optical approximation is fitted for the 

initial time interval t S 1.4 • 10 -22 sec during which about 13% of 

the subspace probability is lost. Although the further loss of proba- 

bility is quite large, the optical approximation remains close to the 

exact solution until the flux of probability back into the selected 

subspace starts to dominate. The latter effect is, of course, outside 

the scope of an optical model. Thus the extrapolation achieved by 

the optical model remains rather accurate over three times the period 

of time of the initial fit, and for more than five times the loss of 

probability within the original fit interval. 

For simplicity the initial optical fit in fig. 4 has been made to the 

exact solution, which, of course, will not be known in practical cases. 

Therefore the optical model approach requires an initial time-evolution 

approximation which the optical potential can then be fitted to. The 

figure shows for comparison the second-order subspace approximation 

discussed in the previous sections (here labelled HH). It almost coin- 

cides with the exact solution within the fit interval of the optical 

potential but starts to deviate much earlier than the optical solution. 

It is therefore evident that the subspace approximation when combined 

with the optical model fit converges over a much larger interval of 

time. 

8. SUMMARY AND CONCLUSIONS 

The examples of the present paper show that the second-order subspace 

approximation, eq. (7), avoids the undesirable unitarity of the time- 

dependent Schr6dinger solution within a truncated subspace that leads 

to an unphysical conservation of probability, mass charge and energy 

etc. within the selected subspace. The second-order time-differential 

equations (7) are completely defined and solvable within any given 

subspace, and the numerical effort required is comparable to that of 
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simply truncating the Schr~dinger equation to the subspace. When 

expanded in powers of the Hamiltonian H (or time t) the second-order 

approximation coincides with the exact solution up to second order in 

H (and up to any order for certain classes of H~ailtonians). This may 

explain why the approximation is in many cases rather close to the 

exact result. In any case studied it turned out to be superior to the 

result of only truncating the time-dependent Schr~dinger equation to 

the subspace (which approximates the exact time evolution only to 

first order in time). 

We have also demonstrated that the approximation can be further im- 

proved by an appropriate time-dependent optical potential. According 

to our results, the optical model solution describes the flux of pro- 

bability out of the selected subspace rather accurately but fails, as 

one would expect, when the flux back from the excluded space becomes 

important. 
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