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Interpretation of hadrons in terms of quarks and antiquarks has 

been so successful that one can no longer think of its substitute. 

The hadron spectrum and high energy hadron reactions are believed to be 

described by means of quantum chromodynamics (QCD). Thus, we feel the 

existence of quarks so real on one hand, but we have never detected 

isolated quarks on the other hand. In this way the explanation of the 

confinement of quarks and also of gluons became one of the central 

problems in QCD. 

In the lattice gauge theory the condition for quark confinement 

is given by the area law for the Wilson loop [i]. In the present paper 

we shall look for the corresponding condition within the framework of 

the conventional continuum field theory. As we shall see later this 

condition is given by the existence of certain bound states between 

a pair of Faddeev-Popov ghosts. 

= - ~F + A-2 B + ~B.B 4 ~.F g g 

+ i~gc.Dgc - ~(y D +m)~, (i) 

where covariant derivatives D are defined by g 

D c = ~ c + g A g  x C ,  

D ~ = (~g-igT-A 1~, (2) 

F = ~ A - ~ Ag  + g A  x A . 

We have made use of the abbreviations,S-T = SaT a and (S×T) a = fabcSbT c. 

Next we introduce the Becchi-Rouet-Stora (BRS) transformtion of 

Heisenberg-fields [2]. 

6A = D c, g 

6B = 0, 

1 
~c =- 2-gc × c, (3) 
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6c = iB, 

6~ = ig(c.T)~. 

This supersymmetric transformation can be expressed in terms of its 

generator QB as 

60 = i[QB, O]_, (4) 
+ 

where we choose the -(+) sign when O involves an even (odd) number of 

the hermitian anticommuting ghost fields c and c. Kugo and Ojima [3] 

have introduced another charge Qc satisfying 

i[Qc, c(x) ] = c(x) , i[Qc, ~(x) ] = - ~(x) . (5) 

It commutes with all other fields, and it defines the ghost number, 

namely +i for c and -i for c. These two charges satisfy the relations 

2 
i[Qc" QB ] = QB' QB = 0. (6) 

The second relation implies that the BRS transformation is nilpotent, 

namely, 62 = 0. 

Then we shall introduce asymptotic fields and their BRS transfor- 

mation. Because of infrared singularities in QCD the existence of 

asymptotic fields might be doubtful, nevertheless we shall simply 

assume it in the present paper. Then the BRS transformation for the 

asymptotic fields is linear. When ~a(x) = b(x) # 0 so that 62a(x) = 0, 

{a(x), b(x)} is called a BRS doublet. When 6a(x) = 0 but its parent 

f(x), satisfying ~f(x) = a(x), does not exist, a(x) is called a BRS 

singlet. Doublets and singlets are the only irreducible representations 

of the BRS transformation. 

By extending the assumed existence of asymptotic fields we shall 

further postulate the asymptotic completeness. The state vector space 

spanned by asymptotic fields in QCD will be denoted by ~. Kugo and 

Ojima [3] introduced a physical subspace ~phys by 

q phys = >II > QBI > = 

Then, by applying only the singlet asymptotic fields to the vacuum 

state a subspace of ~, denoted by ~S, is generated. Obviously we 

have 



157 

C--~ D ~ phys ~ ~S. (8) 

The S matrix exists as a consequence of the asymptotic completeness and 

commutes with QB" When le> and IB> belong to ~S' the unitarity 

condition of the S matrix can be expressed as 

<~I~> = <sls+sl~ > = <sls+P(~s)Sl~ >, (9) 

and similarly for SS~ This relation is a consequence of the Kugo-Ojima 

theorem [3]. P(F-~ S) stands for the projection operator to the subspace 

~S' so that no doublets show in the intermediate states of the up 

unitarity condition. In this sense, doublets in QCD are analogous to 

longitudinal and scalar photons in QED and are confined in the unphysical 

state vector space. Interpreting that singlets represent hadrons, the 

problem of color confinement reduces to that of demonstrating that both 

quarks and gluons are BRS doublets. 

We have already assumed that the vacuum state [0> belongs to ~ S 

and hence to ~Dhys. Thus we have QBI0> = 0 and consequently the BRS 

identity 

< o l 6 T ( - - - ) I o >  = o. (lO) 

In what follows we shall abbreviate <01T(-..) I0> as <...>. Then, by 

making use of the BRS identities we find the following Ward-Takahashi 

(W-T) identities [4]: 

- a 
~i<(Dlc)a(x), 6~(y), ~(z)> + $1<(Dic) (x), ~(y), @~(z)> 

= ig Ta(64(x-y) - 64(x-z))SF(Y-Z) , (ii) 

- a b - a b c 
~l<(Dic) (x), 6A (Y) ' AC(z)>v + ~I <(DIe) (x) , A (y), 6A (z)> 

• a 64 64 = lg~c( (x-y) - (x-z))DFH V(y-z) , (12) 

where M a bc = ifbac' and S F and DFH ~ denote propagators of the quark and 

gluon fields, respectively. We shall write 

< (Dlc) a(x) I a • 6~(y) , ~(z)> = g d4z'Gl(yz ' :X) SF(Z'-Z) , 

<(Dic)a(x) , ~(y), 6~(z)> = gld4y'SF(y-y')Gl(y'z:x). 

(13) 

(14) 
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The Fourier-transform of Eq. (ii) may be expressed as 

a -a 

(p-q) l-Gl(p, q)SF(q) + SF(P)(p-q)l-Gl(p, q) 

= iT a(S F(p)-S F(q)) . (15) 

a and -a by their spin zero projection In this equation we may replace G1 G1 

defined by 

a (0) (P-q) l(P-q)~ Ga(p, q) (16) 
G 1 (P, q) = (p_q) 2 

In order to simplify our argument we shall choose the Landau gauge 

(e = 0) in what follows. In this gauge we have ~IDI~ = 0, and possible 

poles in G1 due to massless vector particles will disappear in this 

projection. A pole due to the massless scalar particle is still present 

as can clearly be seen from the W-T identity 

<(Dlc)a(x) , cb(y) > = i~ab~iDF(X-y) , (17) 

where D F denotes the free massless propagator. This equation shows that 

DI~ generates a massless scalar particle, and we introduce asymptotic 

fields corresponding to this massless scalar particle as 

D~ ÷ ~, c ÷ r. (18) 

We then replace Dlc by Dlc - ~i~ and write F and F for G and G in 

Eqs. (13) and (14). The functions Fla(p, q) (0) and Fla(p, q) (0) so 

defined are free of the poles at (p_q) 2 = 0 except for the projection 

operator in Eq. (16). 

According to Nakanishi's theorem [5] the asymptotic field 

carrying the ghost number (-i) cannot be a BRS singlet, but it must 

be a member of a BRS doublet. Confinement is realized when ~ is 

the second generation of the doublet expressible as 

~d(x) = ~(x). (19) 

Then the BRS identity leads to 

<~l~(x) , 6~(y) , ~(z)> + <~l~(x) , ~(y) , 6~(z)> = 0, (20) 

and by subtracting Eq. (20) from Eq. (ii) we find 
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(p_q) l.F 1 a (p, q) (0)SF(q) + SF(P ) (p_q) l.~la(p, q) (0) 

= iTa(SF(P) - SF(q)). (21) 

We then put p - q = eP with p2 # 0, and apply the limiting procedure 

lime÷0~/~£ to Eq. (21). Since the individual terms on the £. h. s. 

of Eq. (21) are of the order of e because of the absence of poles at 

(p _ q) 2 = 0, we obtain 

Pi.Fla(p, P: p)(O)SF(P ) + SF(p)pl.~la(p, P: p)(0) 

a 8 
= iT PI'~--~I F(p). (22) 

F1 and F1 gain a possible dependence on the direction of P through 

the factor PIP /P 2 originated from the projection operator in Eq. (16). 

Eq. (22) shows that F 1 and/or F1 must share a pole with SF(p) at 

ipy + m = 0. For the symmetry reason both must have this pole implying 

that both 6~ and 6~ generate a pole at the quark mass. 

When ~ is the first generation of the doublet contrary to Eq. (19), 

however, the BRS identity (20) does not hold. Then we have to go back 
a 

to Eq. (15) because Eq. (21) does not follow. Since the functions G 1 
- a 2 

and G1 are not free of the pole at (p-q) = 0, the individual terms 

on the £. h. s. of Eq. (15) are generally of the order of 1 and only 

the sum of the two terms is of the order of e. Then application of 

the limiting procedure mentioned above leads to an equation in which 

derivatives of S F appear not only on the r. h. s. but also on the 

i. h. s. in a sharp contrast to Eq. (22) in which the S F on the i. h. s. 

is not differentiated. In such a case, however, we cannot conclude 

that G 1 and GI must have a pole at the quark mass. Perturbation theory 

falls into this category. 

Thus, when Eq. (19) holds, {~in, 6~in} represents a BRS doublet 

and quarks are confined. A similar argument starting from Eq. (12) 

shows that gluons are also confined under the same condition. 

We shall reexpress the condition (19) in a more convenient form 

by using the BRS identity. 

O = <~(x) , F(y)> 

= <6d(x) , F(y) > 

= - <d(x) , 6F(y)>. (23) 
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This implies the existence of 6F. Since F is the asymptotic field Of 

c and 6c ~ c × c, there must exist the asymptotic field of c × c 

carrying the same set of quantum numbers as that of c but for the ghost 

number. Conversely, when 6F exists, there must be an asymptotic field 

for which <d, 6F> ~ 0. Then we can replace D~c in Eqs. (13) and (14) 

by Dlc - ~16d to introduce the poleless vertex functions FI and FI. 

After that we can repeat the same argument leading to the quark con- 

finement. 

Thus the existence of the asymptotic field for c x c is a suffi- 

cient condition for color confinement. Quarks and gluons are confined 

when they form bound states with the ghost c as is clear from the 

explicit expressions for 6~ and 6A in Eq. (3). When the ghost c itself 

forms a bound state with another ghost, the ability of forming a bound 

state with the ghost is communicated to other colored particles through 

the BRS identities. 

The Bethe-Salpeter equation for the bound states between a pair of 

Faddeev-Popov ghosts can be solved exactly in the ladder approximation, 

but the normalization integral is not convergent. It can be shown, 

however, that introduction of a parameter of the dimension of mass 

is necessary for the convergence of the normalization integral. 

A promising way of improving the approximation to make the normalization 

integral convergent is to exploit the renormalization group method in 

which a mass parameter enters as a renormalization point. 

*) A preliminary version of the present paper will be published in 

Physics Letters. 
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