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The theory of ensembles of random matrices was pioneered by Wigner Eli and has 

been of considerable utility in the analysis of nuclear spectra [2,3,4]. There are 

some problems in condensed matter physics where the theory has been applied with 

some measure of success (see Sec. IX of [4~ ). It is likely that the use of random 

matrix ensembles in solid state physics will increase, particularly because the major 

ensemble types can be realized in practice in solid state problems. 

i. New kind of Statistical Mechanics 

It has been emphasised by Dyson [5] that the approach through random matrices 

constitutes a new kind of statistical mechanics characterized by the hypothesis of 

total ignorance. In ordinary statistical mechanics, the Hamiltonian of the system 

is well defined, but the system is so large that exact computation is neither feasible 

nor meaningful, and observation of all the details is not possible. We consider an 

ensemble of systems described by this fixed Hamiltonian, and assume that all states 

of the Hamiltonian are equally likely for the ensemble. This leads to useful charac- 

terization of the system. 

In the new kind of statistical mechanics we renounce knowledge of the exact 

nature of the system itself. For instance, a nucleus may be pictured as a "black 

box" containing a large number of particles interacting strongly according to imper- 

fectly understood laws. In the study of phonons in glass, a glass is an irregular 

network of several types of atoms which interact in a linear harmonic fashion with 

spring constants varying randomly. The problem is to define in a mathematically 

precise way an ensemble in which various likely Hamiltonians are equally probable. 

A Hamiltonian is represented by a hermitian matrix, usually infinite. For sim- 

plicity, we restrict ourselves to large but finite matrices. Certain conservation 

laws are known; they are associated with some symmetry principles which are supposed 

to be valid for our system, whatever be its Hamiltonian. There are, for example, 

rotational invariance, reflection invarianee and time reversal invariance. These 

imply certain symmetries of the matrices and special features of the matrix elements. 

Thus time reversal invariance implies that the matrix element can be taken to be 

real. Apart from these general symmetry requirements, the matrix elements are regar- 

ded as independent random variables. A common, simple assumption is that the matrix 

element M is normally distributed about a mean value with some variance. Next we 
z] 

ask for the average spectrum of such a matrix ensemble and try to compare the calcu- 

lated spectrum with some experimental result on the excited states of a nucleus, the 
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phonon density of states in glass, etc. 

One interesting feature of this comparison is that we are often more interested 

in the deviations from the calculated results. If, indeed, there is perfect agreement 

between experiment and theory, the hypothesis of total ignorance is justified. This 

may be a happy situation but is devoid of any intellectual challenge. A great deal of 

work in nuclear physics has been done to confront the random matrix calculations with 

experimental data; see Reference [4]. 

In ordinary statistical mechanics we come across several ensembles, uniform, 

microcanonical, canonical, grand canonical, and so on. It has been found by Dyson 

[6] that matrix ensembles can be classified into three types - orthogonal, unitary 

and symplectic - and that all irreducible ensembles belong to one of these three 

types. Dyson has traced the origin of this classification to the theorem of 

Frobenius: over the real number field, there exist precisely three associative divi- 

sion algebras, namely the real numbers, the complex numbers, and the real quaternions. 

It appears likely that all the three ensembles can be practically realized in 

solid state problems. Consider small particles of free-electron-like metals at low 

temperatures. The energy levels are discrete, and around 10°K with particle radius 

about 10 -6 cm, the level spacing is much larger than the average thermal energy. The 

system of metal particles will then show "quantum size effect". Now in an actual 

experiment the shape and size of the small particles may not be precisely controlled. 

The spectrum will show fluctuations. In fact, the electronic energy levels can be 

thought to be the eigenvalues of a fixed Hamiltonian with random boundary conditions, 

which may be incorporated into a random matrix by using fictitious potentials. The 

appropriate ensembles are then as follows: 

(i) if the number of electrons is even and there is no magnetic field, the or- 

thogonal ensemble is applicable; 

(ii) if the number of electrons is odd and there is no magnetic field, the 

symplectic ensemble applies; and 

(iii) when the magnetic field is present and the Hamiltonian is no longer time 

reversal invariant, the unitary ensemble is applicable. 

Brody et al have reviewed the comparison between experiment and theory in this 

field. There are some unsolved problems; in particular, the recent advances in the 

"Weyl problem" E7] can be confronted with experimental work. 

We shall give below a simple derivation of the Wigner semicircular law for the 

asymptotic distribution of the eigenvalues of a random matrix. A paper by Wigner E8 ] 

on bordered matrices contains some other interesting results. 

2. Simple Derivation of the Semicircular Law 

The derivation of the semicurcular law by Edwards and Jones [9] uses nothing 

beyond the properties of the ordinary Gaussian integrals, which are first collected 

here: 
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oo 2 
-ax -½ 

e dx = /[½ a 

-cO 

If a has a n e g a t i v e  i m a g i n a r y  p a r t ,  we can  w r i t e  

2 ~ ½ e-iZ/ 4 -% e -iaX dx = a 

-co 

For a positive definite N X N matrix A = (aij) we have 

OQ 

• . = /TN/2 det-½ A lexp (- Z aijXiX j) ~ dX i 
1,3 l -oo 

d e t  ½ A d e n o t e s  t h e  s q u a r e  r o o t  o f  t h e  d e t e r m i n a n t  o f  A. 

exp ( - i  ~.. a jkXjX k) ~-[dXj = IT N / 2  e - i ~ S / 4  d e t  -½ A 
j , k  3 -o0 

By completing the square one proves 
2 

x + ax (2~b)½ - 2-~- ½a2b 
e dx = e 

.CO 

Hence we g e t  t h e  r e p r e s e n t a t i o n  

co i 2 

eia 2/2 _ e-i/T ~L/4 7 e~X -ax dx 

(2~) -co 

The other i n g r a d i e n t  i s  t h e  e l e m e n t a r y  l i m i t  f o r m u l a  o f  c a l c u l u s  

(2.1) 

(2.2) 

(2.3) 

Hence we also write 

(2.4) 

(2.5) 

(2.6) 

lim xn-i 
= in x. (2.7) 

n~o n 

Consider now the problem of calculating the average eigenvalue spectrum of a 

large N X N real symmetric matrix M. Each matrix element M.. has a gaussian proba- 
13 

bility density function with zero mean and fixed variance O" : 

2 0_2 P(Mij) = (2~0 "2)-½ expE-Mij/2 ~ (2.8) 

Let the eigenvalues of M be M.. The density of eigenvalues is defined by 
l 

1 Z 8( ~ -Mj) (2.9) 

where ~(~) is normalized to unity. Now we give ~ a small negative imaginary part 

and use 

to obtain 

But 

1 1 
P ~ + ~i ~(TX-Mq) 

J 
3 3 

(2. i0) 

det (~I-M) = ~ (7%-Mj) 

J 

#N z z , -  1 
J A _i6_M. (2. ii) 

3 
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Hence 

and 

In det (/%I-M) = ~ in (7~-Mj), 
J 

j ~ -Mj 
(2.12) 

Henceforth ~ is supposed to have a small negative imaginary part, then (2.11) can 

be written as 

~)(~%) = 37 N Im in det ($% I-M) (2.13) 

2 
=-JqN Im in det -½ (~kI-M) (2.14) 

2 ~ lim i I_M)) ~ 
- JIN Im ~n-~o --n [(det-½(~ -I~ 

where in the last line we use (2.7). With (2.4) we can write 

2 ~ 1 ~'e i I[/4 .Nn 
D(~) 07 N Is lim ~[e T )  

n-~o 

(2.15) 

X ~ ~ dX~ exp[-i ~. x~ (~ij-Mij)x3]-1 ] 
i,j=i,N i,j,¢t -oo 
ci=l,n 

(2.16) 

It is here assumed that n is an integer. Equation (2.7) has no such stipula- 

tion. Assume that in the result of interest the continuation to n~ o is still allo- 

wed after we get a formal answer of the integral with n an integer. This step makes 

the derivation nonrigorous. Such a continuation to n ~o from the initial assumption 

of only integral n has worked in several problems in solid state physics (this is 

the replica trick of Edwards and Anderson). The integration is over the Nn varifies 

x~. 
l 

It is good to check that in simple cases the formal n~ o limit goes through. 

Consider an N X N matrix with all matrix elements Mi~3 equal to Mo/N , where Mo~ 0(i). 

It is well known that this has one eigenvalue M and (N-l) eigenvalues 0. Let us 
o 

check if (2.16) leads to the correct result. 

E~ation (2.16) becomes 

V ( Z ) ~--~Im lira [ 
n~o 

x] n (4)2+i =o f 

NOW we use (2.6) in We form known as the "auxiliary field identity": 
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Mo ~ 2 e-i ~/4 
expEi " ~ - ( Z  X i ) ] = [  ½ 3 

i (227) 

$ ~ eiq2/2exp E_ (%~ x dq Z x i J (2.18) 
-OO 1 

The integral in (2.17) becomes 

e-i 2T/4 ~o 
Jl = ~ ~ ~ dq ~l dx'~ exp~i h ~ (4) 2~ 

X exp [ -  q Z X~ + ~ iq 2 ] (2.19) 
i 

The integral over each x. °~ is easily performed by completing the square, (2.5), 
l 

and we find 

2 M 

Jl = ~ e e -iNll/4 (~ dq exp - 2 "7~ 
(2 z) ½ -oo 

With (2.2) we get 

(2.20) 

N N-I 

J1 = ~ e-iNY]/4 3-[2 ~ 2 (~-M o~½ (2.21) 

Thus (2.17) becomes (N-l)n n 

2_im ~__ lim 1 ~ 2 - -- 
U( 7% ) N,7] 8'2X n-->o n E ( "A -Me ) 2 -1 ] (2.22) 

The formula allows continuation in n to fractional values and we take (2.7) as true 
N-I 

2 ~ in~ 2 (h_M)-½] ~)(~) N~ I o 

1 Im~ [ (N-i) In ~ + in(~-Mo)] 
~N 

1 im [N 1 1 

o 

Recall ~ has a small negative imaginary part and use (2.10): 

N.-1 ~(~)+ 1 @(7%_Mo) (2.24) 
U(% ) = N 

We now go back to the real symmetric matrix M with M = M .. From (2.8) we 
iJ J~ 

define J by 
2 O- = J2/N (2.25) 

with J of order unity. The averaged density of eigenvalues p (~) is obtained by 

averaging V( A; {Mij }) of (2.16) over all configurations of the Mij. given by (2.8) : 

= J M (2.26) p(x) u(x; { ij}) ~ p(Mij) d~ij 

Putting (2.8) with (2.26), we carry out all the gaussian integrations over M..: l] 
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2 Im ~ lim i e i27/4 )Nn 
- nE{ ( - -7-r  

X 7~dx2 exPE-i ~ (4) 2]expE- J2 
-oo i 

2 z z  ] }  -1 ]  xex<  iL O7 

Z ( Z xix j, 
i,j 

(2.27) 

We want to retain the leading terms in N as N --~ oo and the term linear in n as 

n-9o. We can simplify the calculation of (2.27) by estimating order of magnitude of 

the second term of the exponentials. 

j2 c~ 01..2 j2 el, 0~ ~ 
Z (7xix j ~  , =%- Z Z x x x x 

N i,j i,j ~ l 3 i ] 

j2 j2 X~ X ~ x ~X @ Z ( Z ( x ~ ) 2 )  2 +-- Z Z ~ • • 
N ~ i N a~ igj 3 l 3 

(2.28) 

The first term is of order Nn. The second has a zero mean, but its square is of 

order n. The third exponential term in (2.27) is of order n 2. Hence it is enough 

to keep the terms 

j2 ~ )2 )2 
%-Z (Z (x i 

i 

Thus for large N, 
Nn 

~(~) = 2 im 9_ lim I E/eiJI/4 ) 
-j]--N n_~o ~ k jq½ 

oo 2 n 

{ /~dxi exPE-i~ = x~- J-N~-(? x~)3} - i  ] 

Use again an aux i l i a r y  f i e l d  i den t i t y  

j2 2 ~ oo 

e ds exp (-i ~s % 
(2J 2) _°o~ i 

The integral in (2.29) becomes 

2 exp(_4Ns 2 X i ) ) 
4J 

(2.29) 

(2.30) 

] --Y ~2 =E ds E dxi("---~ ~-L--exp(-i~(l+s) z x~) exp~ "~s2) (2.~1) 
i 2~1 (2j2) ½ i 4J 2 

The i n t e g r a l s  o v e r  t h e  { x i }  a r e  s t r a i g h t f o r w a r d ,  b u t  t h e  c o n v e r g e n c e  o f  t h i s  i n t e g r a l  

depen~on the small negative imaginary part of ~ . We could make ~ real and maintain 

convergence by p u t t i n g  a s m a l l  n e g a t i v e  i m a g i n a r y  p a r t  t o  s .  Hence t h e  r e s u l t  i s  
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½~ e - N-- in~2 ~ exp [-Ng(s)]} 

-co 
~S 2 1 inEi(l+s ) 3 (2.33) g(s) = + ~- 
4j 2 

The negative imaginary part of s implies that the branch point in in (l+s) lies sli- 

ghtly above the real axis in the upper half plane at -i. We cut the complex s-plane 

by a line running parallel to but above the real axis from -i to -oO. The contour 

of integration in (2.32) lies along the real axis. Since we are interested in the 

result as N-9~, we can now do a simple saddle point integration. 

Now g' (s) = 0 has the roots 

+ 1 E _  1 +_i(  _ So = 7 -1 (2 .34)  

for l }~ I < 2J at complex conjugate points s +- . For I ~X [ >2J, the roots are on the 
o 

real axis 

s + 1 (l- 4J2 ½ 
=  -E-1 +_ ) -I 

In the case I ~l < 2J, the contour must be chosen such that Re g(s) is minimum at the 

saddle point. If the contour integration is deformed downwards to follow the line 

i (4j2 h ½ 
s = x - ~,~- - i] (2.36) 

1 
Re g(s) has a minimum at x = - ~ corresponding to the saddle point So. Along 

1 + 1 
Re s = - ~ we find Re g(s) has maxima at S-o and minimum at s = - 5" Hence the con- 

tour runs through s and, to leading order in N as N-~o~ , we get 
o 

~ ds e -Ng (s) ~_ e-Ng (s:) (2.37) 

Hence we get -co n Nn 

2 Im ~ lim 1 (eiJW/41Nn-N \ 2-- (~j2)-2--37 

X ~n e-½Nnln%-Nng (s:) -i 

N 
½ -S- ~;~ -% ( s : )  

~ { eiN37/4 ( N )  / e 
2 Is in ~ 
N3T (2j2 N/2 

- Im L- ~ in~ -Ng 
N~ 

to leading order in N. Recall that ~ is now real. 

we get 

P (A) 1 (4j2_ ~2)½(for i ~l<2j ) 
2 I r J  2 

After elementary differentiation, 

(2.38) 
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for I ~ I > 2J, the integral turns out to be real and p (~) = 0. 

Equation (2.38) represents the well-known semicircular law of Wigner. 

If the matrix elements are distributed about a fixed mean value Mo/N, we have 

_!z 2 
p (Mij) = (2~2) -½ exp [- 22 (Mij-(Mo/N)) ] (2.39) 

As before we shall define j2 = N 2, where J is of order unity. The calculation is 

very similar and involves only rather detailed manipulations of the contour integra- 

tion at the end. The details are available in the paper of Edwards and Jones [ 9]. 

We shall simply quote the result. 

For a large N x N random symmetric matrix, the elements of which are independent 

gaussian random variables with mean M /N and variance j2/N, the average density of 
o 

states in the limit N---~ is 

P (~) 
o 

= J (4J 2- Z2)½/2~]j2, M ° : 0, I~I <2J 

[ 0 , M ° = 0, I?~I >2J 

(this is (2.38)), and 

P(~) 

I j2 
1 ~{~-(Mo+ } I > J %(~) + ~ ~o) , %1 

~o(~) , i Moi < J (2.40) 

Equation (2.40) has some relevance to the eigenvalue spectrum of a strongly 

coupled localized perturbation in a solid such as a substitutional impurity coupled 

to the phonons. For certain values of the coupling constant of the system a state 

may be split off from the band of extended states and contribute a delta function 

outside the band of continuum of states. 

The other interesting question relates to "band-tailing". Equation (2.40) 

gives a sharp cut-off for the averaged density of states. This is only true for 

N--~o~. For large and finite N, the spectrum has an exponential tail of states 

with a finite number of eigenvalues concentrated in a region of order N -I/6 beyond 

2J [ 3  3.  

3. Random Matrix in Glass 

The random matrix appeared in solid state physics in connection with phonons 

in glass. The solution of this problem in one dimension was given by Dyson [i0]. 

Consider a chain of N masse~ each coupled to its nearest neighbours by elastic 

forces obeying Hooke's law. Only motion in one dimension is envisaged, so each 

mass is described by a single coordinate. Let the mass of the particle number j in 

the chain be m and its displacement from equilibrium position x.. The spring 
3 3 

constant between particles j and j+l is k . Thus the equations of motion of the 
3 
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system are 

m.x. = k + (3.1) 3 3 3(Xj+l-Xj ) kj-l(Xj -l-xi) 

with appropriate changes for the end masses. There is one trivial zero frequency 

mode with all displacements equal. The problem is to calculate the remaining (N-l) 

eigenmodes as N becomes large. 

When the masses and the spring constants are all equal, the calculation of the 

frequency spectrum is elementary. In the interesting case of glass, we have several 

species of atoms and the positions are irregular. One could assume that the masses 

m and spring constants k are arranged along the chain in a random fashion. 
3 3 

Let us put 

½ 
yj = mj xj (3.2) 

and introduce new constants ~1' ~2 . . . . . . .  A2N_I by ~2j-1 = kj /%,  ~2j = kj/n~j+l- 
Then 

'Yj = ( ~2j-1 ~2j  )½ Yj+I + (~2 j - I  ~2j-2 )½ Yj-I -( ~2j_1 + ~2j_2 ) yj (3.3) 

The coefficient matrix is now symmetric. Now we difine new variables Zl,Z2, ...... , 

ZN_ 1 by 

z = ~½ 
% 

3 2j Yj+l - ~2j-1 Yj ' (3.4) 

so (3.3) becomes 

= % zj ½ ~j h2j_l - Z2j_2 zj_ 1 (3.5) 

Finally, we introduce the variables Ul,U2, .... , U2N_l by 

u2j_l = yj, u2j = zj, j = 1,2 ..... N. (3.6) 

Then (3.4) and (3.5) are combined into a set of (2N-I) linear equations 

uj = ~j Uj+l - ~j-i uj-1 (3.7) 

The eigenfrequencies ~ . of the chain are therefore the characteristic roots of the 
3 

(2N-I) x (2N-I) matrix A whose elements are given by 

• % 
Aj+I,j = -Aj,j+l = l~j (3.8) 

All other elements are zero. There is one zero root corresponding to the degenerate 

mode in which all displacements are equal. The remaining roots occur in (N-l) pairs, 

~ and -~.. 
3 3 

The spectrum of eigenfrequencies is given by the function M(~) which is defined 

2 
as the proportion of the roots ~i ~ for which ~i ~ < ~ " As N --~oo , the function 

M(~) will become a smooth differentiable function and then a density of eigen- 
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frequencies can be defined by D(~) = dM ( ~ ) / d ~ .  Cozresponding to given - ~ J }  we 

have to determine M and D. 

There are several different ways to introduce randomization. The masses may 

be independent random variables, while spring constants are all equal. The masses 

may all be the same, while the spring constants are random. Or we may consider the 

.'s, which are combinations of masses and spring constants to be random. 
3 

Dyson studies the function 

~(x) = lira 1 ~ in (l+x~) (3.9) 
N~ 2N-I j J 

= 7 in (l+x~) D(~)d~ (3.10) 
o 

as a function of the complex variable x. That branch of the logarithm is taken which 

is real for real, positive x. The spectral density functions D and M are determined 

by the limiting values of ~(x) on the negative real axis approached from above. 

By a rather intricate analysis, Dyson shows that an alternative expression 

for ~L(x) is 

2N-I 
1 

~(x) = lira ~ ~ in (i+ ~(a)) (3.11) 
N -~ ~ a=l 

where ~ (a) is a continued fraction 

~(~) = x ~a/(l+x ~a+i/(l+x Aa+2/( .... (3.12) 

A simpler derivation of this equation is due to Bellman [ii]. 

the same, ~ = k/m, ~ satisfies 

x~ x~ 

i+ x~ 1+% 
i+... 

and ~ --~ o as x--% o. Hence 

% =  }E(l+~xz)%-l] , 

if(x) = 

and 

D(~) 

1 1 
2 lnE 7 (l+4x~) % +~] 

1 ½ 

0 , ~>4~ 

When all the ~[s are 
3 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Equation (3.16) can be checked by direct calculation. In general solvable cases are 

rare, but Dyson found one analytically tractable. Each of the parameters ~. of 
3 

(3.8) is an independent random variable with the probability distribution 

n -n~ n-i 
n e A (3.17) 

Gn ( ~ ) (n-l) 

the integer n taking the values 1,2, ..... The distribution has mean 1 and standard 
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-% 
deviation n and in the limit of large n, G n 

n ½ - ~ (n-l)2 

Gn(~k) ,--; (2~) e 

(~) becomes a gaussian 

(3.1s) 

Notice the probability distribution is defined for a combination of spring constant 

and mass, and not of each separately. 

The details of the solution are complicated. For small z, the function M(z) 

is given by 
2 

Mn(Z) ~ E ~ - tn_ I] /E~ 2 + in nz + Sn_ 1 + ~ ] 

with 
J J 1 

s = ~ ~ ~ , t. = 
J £=i 3 £=i 

(3.19) 

1 
-- (3.20) 
6 2 

and ~ is Euler's constant = 0.5772, .... For large z, 

M (z) = i - 2 (in nz - s n i+~) e -nz (nz) 2n-I ~(n-l)~-2 
n 

(3.21) 

For comparison, the uniform chain result (3.16) leads to 

1 -i 
M(z) = ~ cos (l-%z) , z<4 , 

= 1 , z >4 (3.22) 

Follows a very important conclusion, which is probably valid generally : A dis- 

ordered chain has a much greater proportion of very low characteristic frequencies 

than a uniform ordered chain. 

Several points worth further study may be mentioned. 

(i) Dyson's calculation is in one dimension and does not include topological 

disorder which is possible in three dimensions. Very little has been done in this 

regard. 

(ii) The distribution function G does not correspond to any physical chain. One 
n 

could consider problems of equal coupling constants but random masses. A formulation 

was given by H. Schmidt [12], but Schmidt's equation has been characterized by Lieb 

and Mattis [13] as one oft he most difficult equations in mathematical physics. 

(iii) Dyson's formulation, though elegant, requires analytic continuation of J-i(x) 

to the negative real axis through the upper half plane. This makes the formulation 

difficult for numerical computation. The numerical work done in this field has been 

reviewed by P. Dean [14] . Whether one can reformulate Dyson's method in a form 

suitable for computation has not been studied much. Neither has any other analytical 

solutionlexcept (3.17) s been discussed in the literature. 

Stress Relaxation in Glass 

We shall now turn to another problem in glass which is again not clearly under- 

stood. It is known that glass is a linear solid and exhibits "delayed elasticity" 

(see a lucid exposition by Douglas [15]). Apart from the normal instantaneous 
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elastic response, common soda-lime-silicate glass exhibits linear viscoelastic flow. 

Experimentalists have established that creep and stress relaxation in glass are non- 

exponential. With thestrain kept constant, the stress S in glass relaxes because of 

delayed elasticity according to a law 

S(t) = S O exp E-(t (~)~)~ (3.23) 

S is the initial stress. The mean relaxation time ~ ~ 4 x 104 sec and is directly 
o 

proportional to viscosity, showing the same temperature dependence. The viscosity 

here is around 1014 poise . The index ~ changes with time; for t<< ~, ~ ~ O.5 ; for 

t ~ ~ ~ is around 0.5 to 0.6; and for t>> ~ , ~ --~ i. The problem is to find an 

explanation for the form (3.23), the existence of large relaxation times and the 

values of ~ [16]. 

It is natural to start with the Navier Stokes equation for viscous flow: 

We may consider glass as an incompressible fluid. Then V.~ = 0 and the pressure 

term V p also drops out (that is, we ignore sound propagation). As we are in the 

linear regime we also drop the non-linear term~.~)~ . We then end up with 

P~t ~ = qv2V (3.251 
which we may write as a diffusion equation 

~! = DV2~ (3.26) 
Bt 

where D = ~ /p . 

Equation (3.25) is a classical continuum equation. Suppose we try to write a 

discrete version and take into account the different atomic masses. Consider a 

1-dimensional case first. 

8~ 02u (3.271 
P~-E = ~q 0x 2 

After simple manipulations this can be replaced by 

~ u  i a i a i_  1 
8t ~ [ m-7 (Ui+l-Ui) + = m (Ui_l-U i) ~ (3.28) 

l l 
th th 

where m. is the i mass and a. the distance between the i and (i+l) , masses, a 
l l l 

and m. are random variables. This equation has a form similar to Dyson's equation 
i 

(3.1), with 002 replaced by ~-I, where ~ denotes a relaxation time. From the 

theory of random matrices we can carry over the qualitative conclusion : the disor- 

dered system will have larger proportion of longer relaxation times than ordered 

systems. So the delayed elasticity is expected. 

The trouble is that the starting point (3.24) is not quite right. Each rela- 

xation time ~ is inversely rather than directly proportional to viscosity and the 

relaxation time does not increase with viscosity as observed. If we use the kinetic 
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theory, the diffusion coefficient D = ~ /~ = = 7%/3~ where ~ is the mean 
3 

free path, c the mean velocity and ~ the time between collisions. The mean path 

picture breaks down when the viscosity is high and the Navier-Stokes equation becomes 

inapplicable. 

It has been agreed ~17] that the equation (3.26) being a macroscopic equation 

can be retained in the region of high viscosity, but the diffusion coefficient should 

be something like the Einstein diffusion coefficient in the Brownian motion 

k B T 
D (3.29) 

6 ]~a 

a is a characteristic average length of the network in glass. The indices 4 could be 

produced with suitable mode distribution [17 3. The value of ~ comes out right, 

4D (3.30) 

where ~ is the short range order in glass. By (3.29) ~ is directly proportional 

to ~ . The problem of establishing the flow equation at large viscosities has not 

been satisfactorily solved. What seems to be happening is epitomized in a stochastic 

model of Kramers [18 J on the escape of particles over potential barriers. When the 

viscosity is small, the rate of escape depends very little on viscosity (the Navier- 

Stokes situation), but when the viscosity is large the rate is inversely proportional 

to viscosity (the glass problem). 

4. Conclusion 

We have indicated several areas in solid state physics where random matrices 

appear. Another closely related area not touched above is that of spin waves in dis- 

ordered Heisenberg magnets El9]. Analytical and numerical techniques used in the 

problems mentioned above and the technique of diagonalization of sparse matrices 

are often useful for such problems. 
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