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I. Introduction and Outline 

Stochastic evolution models are often used to study time- 

dependent properties of many-body systems. Some examples are the 

Brownian motion of particles, tracks of nuclear particles through dense 

media, kinetics of nucleation in super-heated liquids etc. These 

models provide the basic framework for studying time-dependent pheno- 

mena in statistical mechanics, such as the approach to thermal equili- 

brium from an arbitrarily prepared initial state, or of non-equilibrium 

steady states in dissipative systems, or the appearance of co-operative 

long-time correlations in the neighbourhood of second-order phase- 

transitions. In the following, the relaxation properties of some 

kinetic Ising models are briefly discussed. 

The plan of these lectures is as follows: In section II, we 

discuss briefly ho% the probabilistic description of evolution of many- 

particle systems c~a be reconciled with the deterministic (microscopic) 

mechanical evolution. In section III, the rate-equation for the 

Markovian evolution, and the condition of detailed balance are describ- 

ed. ' In section IV, we introduce the single-spin-flip kinetic Ising 

model and general crystal-growth model (of which the kinetic Ising 

model is a special case). The dynamical scaling hypothesis, and some 

of its consequences are discussed in section V. Sections VI and VII 

contain brief discussions of long-time relaxation in a disordered Ising 

model in one and higher dimensions respectively. It is shown that in the 

disordered Ising model with broken bonds, the relaxation of magnetiza- 

tion to the equilibrium-value is slower than exponential for all 

temperatures below the critical temperature of the model without dis- 

order. 

II. Probabilistic Versus Deterministic Evolution 

The understanding of the coexistence of thermodynamic irreversi- 

bility (as canonized in the second law of thermodynamics) with micro- 

scopic mechanical reversibility has been the central theme in non- 

equilibrium statistical mechanics. The fact that the time-evolution 

of a gas undergoing free expansion, and its time-reversed evolution 



301 

are both consistent with the laws of mechanics, clearly shows that it 

is not possible to 'prove' the approach to equilibrium in isolated 

systems without making additional assumptions about the evolution of 

macroscopic systems. These assumptions are necessarily extra-mecha- 

nical. They may be very plausible (e.g. the unprovable assertion that 

initial states corresponding to sets of measure zero in phase space 

are unlikely to occur in real experiments) or much less obvious ones 

(these also are usually preceded by the qualifier 'almost always'). 

These may be assumptions about the large size of the system (absence 

of Poincare recurrences), the tendency of the phase space trajectory 

of the system to diverge (the mixing property), the decay of multi- 

particle correlations (Boltzmann's collision-number hypothesis) or the 

presence of weak but uncontrollable interactions of the system with 

the outside (evolution in the presence of weak noise). In the follow- 

ing, we shall adopt the position that the macroscopic relaxation 

behavior of large systems is very well modelled by a probabilistic 

evolution law, in particular by Markovian dynamics, and shall side-step 

the question of deriving the master-equation from more elementary 

principles. (For a discussion of these issues, see [1-3]). Note that 

macroscopic deter~ ~stic evolution (e.g. the Navier-Stokes equations) 

is a special case of Markovian dynamics, and corresponds to the case 

when fluctuations in the macroscopic variables are small. 

A simple illustrative example of a system which undergoes 

deterministic evolution, but may be equivalently described by a probabi- 

listic law, is the following: Consider a particle performing a walk on 

the points of a linear chain. The internal state of the particle is 

described by an angle-variable 8 (0 < 8 < 27), which undergoes a 

(discrete-time) deterministic evolution according to the law 

St+ 1 = 28 t (modulo 27). (i) 

The particle starts at time t=0. At subsequent times t=i,2,3,..., it 

takes a step of unit length to the right, or to the left, according 

as cos8 t is positive or negative. If the value St= 0 is known, the 

motion of the particle is completely determined. Assume, however, that 

the value St= 0 is known only to a finite accuracy; the a priori proba- 

bility density of St= 0 being constant for 18t=01 < 2-N~, and zero else- 

where. It is easy to see that under these assumptions, the steps of 

the particle for t > N are perfectly random and uncorrelated. As far 

as the motion of the particle on the chain is concerned, after the 

decay of initial state correlations (for t > N), it can be described 

as a simple unbiassed random walk. 
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In this example, the stochastic evolution is a result of the 

exponential growth of the initial-state uncertainty with time. Note 

that the stochastic characterization of the random walk does not 

involve the 'internal degree of freedom' St. In general, the number 

of variables in terms of which the 'mesoscopic' state of the system is 

characterized need not be as large as the number required for a full 

microscopic characterization. 

III. The Rate Equations 

Consider a finite system which at any time t may exist in any 

one of a denumerable number of states labelled by integers 1,2,3... The 

system is in contact with a heat-reservoir, and the interaction causes 

transitions between these states, the transition rate from state m to 

state n being Wmn. Let Pm(t) be the probability that the system exists 

in the state m at time t. From the general theory of Markov chains 

[see e.g. [4]] it follows that under very weak conditions on the transi- 

tion rates W 's (each state must be reachable from every other), as 
mn 

the time t tends to infinity, Pm(t) tends to a limiting value Pm(~) in- 

dependent of the initial state. The time evolution of Pm(t) is govern- 

ed by the equation 

dtd Pm(t ) = n~m[Pn(t)Wnm - Pm(t)Wmn] (2) 

In problems of physical interest, P~q is the well known equilibrium 

distribution 

peqm = exp(-SEm)/[~ exp(-SEn)]; (3) 
n 

where E m is the energy of the state m and 8 is the inverse temperature 

characteristic of the heat bath. The requirement that a system at 

large times should tend to thermal equilibrium constrains the physi- 

cally admissible transition rates Wmn'S, but it does not determine 

them uniquely. Many different choices of W 's would be consistent 
mn 

with a given limiting distribution,{p~ q} is a time-invariant probabi- 

lity distribution for the rate equation (2) if 

[WmnP~q - WnmP~q] = 0, for all m. (4) 
n 

These conditions are c l e a r l y  s a t i s f i e d ,  i f  W ' s  s a t i s f y  t h e  d e t a i l e d  
mn 

balance condition 

Wren = Wnm exp[-SEn+SE m]. (5) 
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Since the limiting distribution is the unique time-invariant distribu- 

tion (for finite systems), the assumptions of Markovian evolution, the 

detailed balance condition, and non-existence of other conserved quan- 

tities guarantee that the system will relax to thermal equilibrium with 

time. 

Define Pm(t) = Pm(t)exp(SEm/2). (6) 

In terms of Pm(t)'s, eq. (2) may be rewritten as 

dat Pm (t) = ~- Pn(t)Wnm (7) 
n 

where Wmn = Wmn exp[8(En-Em)/2] for m@n (8) 

and Wmm = - n~m Wms (9) 

If the transition rates Wmn satisfy the detailed balance condition, 

then W is a real symmetrical matrix. Hence all its eigenvalues are 

real. The rate of growth of Pm(t) with time is related to the largest 

eigenvalue of W. Since Pm(t) tends to a constant value for large t, 

the largest eigenvalue of W is zero. 

The problem of integration of Eq. (7) is reduced to that of dia- 

gonalizing the matrix W. This is quite hard, and has not been solved 

yet for any nontrivial model so far. Some specific models of interest 

are described in the next section. 

IV. Stochastic Evolution Models 

Our progress in understanding irreversible phenomena in statis- 

tical mechanics is severely hampered by the lack of simple illustrative 

models which are exactly soluble for their nonequilibrium properties, 

and thus serve as testing-grounds for theories or guides to intuition. 

An important motivation for the study of the kinetic Ising model and 

the crystal-growth model discussed below is that the powerful techni- 

ques of equilibrium statistical mechanics can be used to study these 

models, and thus they help us bridge the gap between our understanding 

of these disciplines. 

(a) The Kinetic Isin@ Model: Consider an Ising ferromagnet in which 

the spins o. (i=l to N), taking values ±i, are located at the sites of 
1 

a d-dimensional hypercubical lattice. The Hamiltonian of the system 

is given by 

H = - .[, JijCicj . (10) 
~3 
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we denote a configuration of spins by {a}. There are 2 N possible 

configurations. In the Glauber model [5] the evolution is assumed to 

be due to single-spin-flips. The probability that the i th spin flips 

between the times t and t+dt, when the configuration of spins at time 

t is {a} is assumed to be equal to Wi({a})dt, where 

Wi({~}) = ½ [i - tanh 8hi(t)] , (Ii) 

and 

h i(t) = #[ Jijsj (t). (12) 
j i 

It is easy to see that the choice (ii) satisfies the detailed balance 

condition, and hence in the long-time limit the equal-time correlation 

functions of this model agree with those calculated using equilibrium 

ensembles. Glauber studied the relaxation of a one-dimensional chain 

with nearest-neighbour couplings in zero external field. An exact 

solution for a linear chain in the presence of an external field, or 

for a higher dimensional lattice has not yet been found. 

The single-spin-flip Glauber model is not applicable to Ising 

systems like binary alloys, because the assumed dynamics does not 

conserve magnetization (particle-number in alloys). However, a similar 

rate matrix W, which describes a simultaneous exchange of spins between 

neighbouring sites i and j is easy to write down such that it satisfies 

the condition of detailed balance. The evolution equations for this 

model are similar to the single-spin-flip case [6]. 

Much insight into the behavior of these models near phase transi- 

tions has been obtained by Monte-Carlo simulations. These have been 

comprehensively reviewed in ref. [7]. A review of the theoretical 

aspects may be found in Kawasaki [6]. 

(b) Crystal-Growth Models: Consider a model of crystal-growth shown 

in Fig.l. The lattice is a square lattice. At time t=0, each of the 

sites (x,y) is unoccupied if x+y > 0, and if x+y ~ 0, it is occupied 

by one (and only one) of two kinds of atoms A and B. The state of an 

occupied site (ij) is characterized by an Ising variable ai, j which is 

+i or -i according as the site is occupied by A or B. At time t=l, 

each of the sites (x,y) lying on the line x+y=l is filled by a particle 

A or B taken randomly from an external source of particles. We assume 

that sites on this new 'layer' are occupied independently of each other, 

and that the probability that the site (i,j) is filled by an A atom 

(or B) depends on the configuration of neighbouring earlier-filled 
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Fig.l: The crystal-growth model. The full and open squares 
denote sites occupied by A and B atoms respectively. 
Unoccupied sites are denoted by open circles. 

sites (i-l,j), (i,j-l) and (i-l,j-l). Once a site is occupied, it 

stays occupied by the same atom at all subsequent times. At times 

t=2,3,..., successive layers of sites x+y=2,3,.., are filled and the 

boundary of the 'crystal' (occupied sites) moves outwards. The model 

simulates the growth of mixed crystals from solution, under conditions 

when particle diffusion in the solid phase is negligible [8-9]. 

The full specification of the model requires a specification of 

the conditional probabilities Prob(~i,j[~i_l,j,~i,j_l,~i_l,j_l). Since 

Prob(+lle,B, T) + prob(-iI~,8,y) must be 1 for all ~,8,y,we may write 

Prob(oi,jlOi_l,j,oi,j_l,Oi_l,j_ l) = ½ [l+°i, j f(°i_l,j,°i,j_ I, 

Oi_l,j_l)] (13) 

The model is thus defined in terms of 8 parameters, the values 

f(±l,±l,±l). 

We may treat t=x+y as the 'time' coordinate, and the configura- 

tions of ci,5's~ on the lattice as time-histories of a discrete-time 

evolution kinetic Ising model on a linear chain in which the spins on 

odd-numbered sites are allowed to flip at odd values of the discrete 

time-parameter, and the even numbered ones when the time-parameter is 

even. 

The general model involving 8 parameters is quite difficult to 

analyse. Of special interest is the case when the function f in Eq. 

(13) is independent of the spin Oi-l,j-l" If we also assume mirror 

symmetry about the line x=y, the model can be characterized in terms 

of 3 parameters only. We write 

f(+l,+l,±l) = a; 

f(+l,-l,±l) = f(-l,+l,±l) = b; (14) 

f(-l,-l,±l) = c. 
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It is easy to see that the case 

a = 4p-2p2-1; b = 2p-l; c = -I (15) 

corresponds to problem of directed bond percolation with bond-concen- 

tration p. The case 

a = b = 2p-l; c = -i (16) 

corresponds to the directed site-percolation problem. These problems 

have attracted much attention recently [10-15]. The problem with 

a=b=-i is exactly soluble and is related to the directed animals 

problem [16,17]. Various other special soluble cases of the general 

crystal-growth model have been discussed by Enting [18]. Crystal-growth 

models in higher dimensions, or on other lattices are easy to define, 

but are usually quite difficult to solve exactly. 

V. Dynamical Scalin@Theor[ 

Near phase-transitions, the spatial and temporal correlations 

in the Ising model became long-ranged. The singular behavior of these 

correlation functions is described in terms of critical exponents, 

which are expected to show universal characteristics, as in the case 

of equilibrium phase transitions. In fact, from the discussion in the 

previous section, it is clear that there is no essential difference 

between the statistical-mechanical descriptions of static and dynamical 

critical phenomena. Calculating time-dependent correlation functions 

in a d-dimensional system involves averaging over histories of confi- 

gurations, which is just like a (d+l)-dimensional static calculation. 

Dynamical scaling theory [19] is a natural generalization of the static 

scaling theory used to describe equilibrium phase-transitions. Using 

this theory, the time-dependent critical behavior of a wide class of 

systems (including kinetic Ising models) can be described in terms of 

only 3 independent critical exponents. 

Consider a d-dimensional kinetic Ising model at a temperature 

T = T (I+~), where T is the critical temperature of the model, and 
c c 

e is small. We consider only the case, when there is no external 

magnetic field present. Inclusion of magnetic field requires only a 

straightforward extension of the formalism. The time-dependent two- 

point correlation function in equilibrium is given by 

G(~,t,e) def __ < ~{+~ (t+to) ~ (to) (17) 

Note that G(~,t,e) described the time-dependent correlations in the 
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equilibrium state and hence does not depend on ~ or t . 
o 

According to the dynamical scaling hypothesis, the function 

G(~,t,e) in the limit of large spatial or temporal separations and 

small e, equals a generalized homogenous function of ~, t and e. The 

difference between G(~,t,g) and the homogeneous function is a non- 

universal correction-to-scaling function which is asymptotically 

negligible in the critical region. Since we are not going to discuss 

corrections to scaling here, the generalized homogeneous function will 

be denoted by the same symbol G(~,t,e). A function G(~,t,e) is said 

to be a generalized homogeneous function if there exist constants 8, 

and z such that 

G(~,t,e) = X+28G(X+~, ~zt, x-le) for all X > 0. (18) 

A similar equation describes the behavior of more general n-point 

correlation function. The n-point function is scaled by X n8 if all 

distances, times and e scaled as in Eq.(18). From the scaling equa- 

tion (18), the singular behavior of various physical quantities can be 

deduced in terms of the three critical exponents 9, z and 8. In the 

presence of external magnetic field, an exponent A characterizing the 

scaling of the external field has to be included. However, if we 

assume the hyperscaling relation (du = 2-e, where u is a known function 

of 8, 9 and A), then the number of independent exponents is 3 again. 

On putting t=0 in the above equation, it reduces to the static 

scaling equation. It follows that 8 and ~ appearing in Eq.(18) are 

the conventional magnetization and correlation leng£h exponents. 

Consider now, the autocorrelation function G(0,t,-e). By the scaling 

hypothesis, it can be written in the form 

G(0,t,-e) = e28f(te ~z) (19) 

where f(x) is a function of a single variable x. As x tends to infinity, 

f(x) tends to a constant. Since t scales as e -9z in the above equation, 

the relaxation time must diverge as e -uz for small £. If we fix t, and 

let £ ÷ 0, then G(0,t,-g) has a smooth limit only if f(x) varies as 

x -28/~z for small x. This then implies that 

G(0,t,0) ~ t -28/9z (20) 

In the analysis of the decay of magnetization from an initially aligned 

state, we cannot use time-translational invariance. However, if we 

assume that an equation analogous to Eq.(19) can be written down for 

M(t), we get 
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M(t) = eBg(te9z), (21) 

where, since M(t) + e 8 as t ÷ =; g(x) should tend to a constant as x 
-81vz tends to infinity. Then arguing as before, g(x) must vary as x 

for small x, giving 

M(t) % t -8/9z, for e = 0. (22) 

This is slower than the decay of the auto-correlation function, and is 

due to multi-spin correlations. The relative simplicity of such results 

using scaling theory becomes especially valuable, as a complete solution 

is not available for any of the kinetic Ising models showing phase 

transitions. In the finite-size scaling method, similar scaling tech- 

niques are used to determine the values of the exponents 8, v and z by 

extrapolating the behavior of infinite systems from a sequence of 

finite-size realizations which are solved exactly (numerically). The 

procedure yields very good numerical estimates of static and dynamic 

critical exponents [13,20]. 

VI. Relaxation in Disordered Isin@ Chains 

The Ising model in one dimension does not undergo any phase 

transition, and hence relaxation in Ising chains does not show all the 

features of critical slowing down near phase transitions. However, it 

is the only non-trivial model showing approach to thermal equilibrium 

for which the time-dependent correlation functions can be calculated 

without too much trouble, and hence serves as a useful test case for 

various approximations. In the following we study the relaxation of 

magnetization in a chain from an initially aligned state. The relaxa- 

tion is found to be exponential in the homogeneous case. On introduc- 

ing a quenched disorder in the band strengths, the relaxation is not 

exponential any longer, and we study its long-time behavior. 

The Hamiltonian of a linear chain of Ising spins ~i(i=l to N) 

is given by 

N-I 

H = [ Ji+i/2 ~i°i+l" (23) 
i=l 

j , The coupling constants i+i/2 s are assumed to be auenched, independent, 

identically distributed random variables taking values Jl and Jo 

(0 ~ Jl < Jo ) with probabilities (l-p) and p respectively. The time- 

evolution of the probability ~ of the configuration {al,O2,... ~N } in 

the single-spin-flip Glauber model is governed by the equation 
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d--£d ~({o 1'o 2 . . . . . . . .  .oN}) = [ [W~@({o I -o i' oN})-W [@({olo 2. .oN})] 
i 

(24) 
+ 

where W~ are the spin-flip probabilities per unit time for the spin o i. 
+ 

The most general expression for WT({o}) which depends only on Oi_l,O i l 
and Oi+l, and satisfies the detailed balance condition is 

W ± 1 i = ~ [i ± o i tanhBhi(t)] [A+B(Oi_l+Oi+ I) + Coi_iOi+l], (25) 

where hi(t) is the effective field at site i given by 

hi(t) = Ji_i/2Oi_l(t) + Ji+i/2Si+l(t). (26) 

In the special case A=I, B=C=0, Si(t) defined as the expectation value 

of oi(t) evolves according to the equation 

(I + d~)Si(t) = CiSi_l(t) + C~Si+l(t) (27) 

where 

÷ 1 
C~ = ~ [tanhS(Ji+i/2 + Ji_I/2 ) ± tanhB(Ji+i/2 - Ji_i/2 )] 

(28) 

We assume that at time t=0, all spins are +I. The average magnetiza- 

tion at time t is given by 

N 

1 [ Si(t ) (29) S(t) = ~ i=l 

Eq.(27) may be written as the matrix equation 

d 
d-~ IS(t) > = "AIS(t) > (30) 

where A is an NxN tridiagonal matrix, independent of time. The equa- 

tion may be solved formally to give 

S(t) = [ dlD(X)exp(-Xt) (31) 
o 

where 

D(1)dl = < [ < S(0) II' >< 1'IS(0) >> (32) 
l<l'<l+dl c 

where II' > and < I' I are the right-and left-eigenvectors of A with 

eigenvalue 4', and < > denotes configuration averaging over the c 
quenched variables Ji+I/2's. If p=l, and N ÷ =, straightforward 

diagonalization of A shows that 

M(t) = exp(-lot) (33) 
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with 

lo = 1 - tanh28J O. (34) 

If p @ i, the arguments of Lifshitz [21] show that (details of these 

calculations may be found in Dhar and Barma [22]) D(1) is non-zero if 

[X-I I < tanh2~J ,u and as X tends to lo from above, D(X) varies as 

exp[-(X-Ao)-I/2c] , where C is a known constant. Substituting this 

asymptotic form of D(1) in Eq. (31), the behavior of M(t) for large t 

is easily determined. We find 

M(t) ~ Exp(-A t-atl/3), as t + ~. (35) 
o 

If the temperature is very low so that the thermal correlation length 

~T = exp(28Jo) is much larger than the percolation correlation length 
= 3 ~p i/(l-p), then in the time domain ~T~p << t << ~T/~p, the magneti- 

zation is approximately given by the formula 

M(t) ~ exp(-A t-bt I/2). (36) 
o 

While this is an admittedly simplified model, the existence of non- 

exponential relaxation in the presence of disorder is gratifying. Many 

experimental disordered materials show such a behavior. 

VII. Hi@her Dimensions 

Consider now the kinetic Ising model on a d-dimensional hyper- 

cubical lattice (d > i) with single-spin-flip dynamics given by Eq.(ll). 

We restrict ourselves to the case of nearest-neighbour ferromagnetic 

couplings and Jl=0. 

In this case, the equation of evolution for Si(t) involves multi- 

spin correlation functions, and a rigorous analysis of the problem is 

difficult. Even in the limit of high temperatures, when higher order 

correlations may be neglected, the resulting equations are difficult to 

solve in the disordered problem. However, it is easy to see that the 

relaxation would be non-exponential in general. 

If p is less than the critical percolation probability Pc on 

the lattice, all clusters are finite, and the equilibrium state is 

paramagnetic with no spontaneous magnetization. The density of clusters 

of size n varies as exp(-An), where A is a p-dependent constant. 

Because of the absence of mutual interactions, different clusters 

evolve independently of each other. For each finite cluster, the 

relaxation problem is in principle soluble, involving a diagonalization 
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of 2 n x 2 n matrix. Let T n be the relaxation time (actually this is 

the longest of the spectrum of relaxation times) of a typical cluster 

of size n. [A more careful argument would take into account the fact 

that T depends on the shape of the cluster also.] If the temperature 
n 

T is greater than Tc, the critical temperature for the pure case (p=l), 

then all clusters have finite relaxation times. We may write for 

large n 

-I -x 
T n ~ B(T,p) + cn . (37) 

-I 
Here we have used the fact that T is a bounded decreasing function 

n 
of n. We expect B(T,p) to vanish as T tends to T from above. In the 

c 
vz 

special case p=l, B(T,p) = (T-T c) for T near Tc, where z is standard 

dynamical critical exponent. The extrapolation form (37) is only one 

of several equivalent forms showing the correct n dependence in the 

limit of large n, Using a Lifshitz-like argument, we would expect that 

x = 2/d. The average magnetization at time t is given by 

M(t) = ~ Pn exp(-t/~n) 
n 

For large times t, Eqs. (37) and (38) 
1 

M(t) ~ exp[-B(T,p)t - Dt +~] 

together imply that 

(38) 

(39) 

where D is some function of T and p. 

If T < Tc, there will be exceptionally large clusters for which 

there are two metastable states of opposite magnetization with very 

infrequent transitions between them. Por these clusters, the relaxa- 

tion times are expected to be a strongly rising function of n 

T ~ exp[nX'A' (T,p)] (40) 
n 

Again, we expect A' (T,p) to vanish as T tends to T c from below. Also 

x' is equal to (l-l/d). This is because the free energy barrier 

between up and down magnetized states is the surface energy of a 

domain wall spanning the cluster. Such a wall would be of size n l-I/d 

for compact clusters having n sites. 

Using Eqs. (38) and (40) we get for T < T c and p < Pc 

M(t) ~ exp[-A"(log t) i/x'], as t + ~; (41) 

where A" is some constant which depends on T and p. 

If p > Pc' there is an infinite cluster, and the possibility 

of a ferromagnetic-paramagnetic phase transition. However, the 
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analysis given above would still hold for the finite clusters, which 

still would relax to zero magnetization very slowly. Hence the overall 

relaxation of magnetization would be non-exponential. Note that for 

all T < Tc, whatever the value of p, the relaxation of magnetization 

is slower than exponential. This is essentially a rigorous result and 

depends only on the finite probability of occurrence of very large 

compact clusters with no holes. These clusters have large relaxation 

times and their contribution to the average magnetization of the 

sample dominates the long-time relaxation. This result is the non- 

equilibrium counterpart of Griffiths singularities (Griffiths [23]). 

For intermediate time regimes, the relaxation of noncompact clusters, 

as well as of the infinite cluster have to be considered. 
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