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i. Introduction 

The dynamics of a great variety of problems can be usefully studied on the basis 

of the Fokker-Planck equation (FPE), that builds in at the outset, a separation of ma- 

croscopic and microscopic time scales. The effect of macroscopic drives and dissipa- 

tions enters through the drift terms, whereas the diffusion terms account for rapidly 

varying microscopic noise. An important question, conveniently answered in the FPE 

framework, is : what is the time required for the passage of a prepared initial state 

to a final stationary state . Physical examples where such questions find relevance in- 

clude the nucleation rate of a liquid droplet from the vapour phase EI~, decay of a 

supercurrent in a superfluid or superconductor E2~ , spinodal decomposition in an alloy 

E3~, optimum sweep rates for hysteresis in first order transitions E4~, and so on. It 

is clear that deterministic forces and random noise will both play a role in determi- 

ning the transition rates. Quite generally, therefore, one is interested in calcula- 

ting the decay rate or the relaxation time of a metastable state through the natural 

tool of the FPE ~5~ . 

Historically, a problem of this kind was first studied in a classic paper by 

KramersE6 ~. He was interested in computing the rate of escape of a particle across a 

mechanical barrier due to thermal fluctuations. An FPE was used, with the stochastic 

variable being the position x, the thermal energy kBT being related to the diffusion 

constant, and the mechanical force and viscosity determining the drift term. The 

Kramers treatment is based on an ansatz that should be valid when the barrier height 

is larger than the thermal energy. A similar high barrier or weak noise assumption 

is invoked at different stages of other methods as will become clear later on. 

An explicit example of a Kramers-like problem would be rotational Brownian motion 

of a single domain magnetic particle in a highly anisotropic potential~7~. Here the 

angle 8 would replace the variable x. Another example, in a more general context, 

could be the dynamics of an equilibrium or nonequilibrium phase transition. Then the 

variable x would be an (single component) order parameter while the potential would be 

a coarse-grained free energy-like functionalE8~. Extensions of the one-dimensional 

Kramers problem to many variables have also been made by several authors, using varia- 

nts of the original Kramers ansatz~5~or other techniquesE9 ~. Some comments on this will 

be made below. 

The Kramers method is intuitively appealing and based on sound physical insight 

into the problem. An alternative approach is to estimate the mean time for a stocha- 

stic variable, within a given region, to first reach the boundary of that region. The 



62 

equation governing the dependence on the initial position of this mean 'First-Passage 

Time' (FPT), is derived from the FPE. In the high barrier/weak noise limit, the Kra- 

mers and FPT estimates for the decay rate of a metastable state are identical, if 

'passage' is appropriately defined. The FPT formalism is instructive because it links 

the problem more directly and systematically to the machinery of stochastic problems 

EIO~, it can be formally generalized to the many-variable case and situations where 

detailed balance does not holdE9 ~. Physical applications of the FPT ideas include tra- 

nsient phenomena in optically bistable systems EII,12~ and analysis of the problem of 

hysteresis versus jump behaviour in first order equilibrium and nonequilibrium transi- 

tions E4~ . 

Mathematically, the FPE is parabolic : it is a second order partial differential 

equation in the space derivatives and first order in the time derivative. The time- 

dependent probability can therefore be written as an eigenfunction expansion, with the 

eigenvalue{~n} appearing in exponential decay factors associated with each eigenfune- 

tion. The zero eigenvalue corresponds to the stationary state, and the nontrivial 

eigenvalues, therefore, determine the decay rates for metastable states. This allows 

one to introduce a third, formally elegant approach to the problem, involving varia- 

tional bounds on these eigenvalues. It turns out that the lowest non-trivial eigen- 

value ~l ~<Tp >-I' the inverse of the mean first passage time, in the large barrier 

limit. A physical application of this approach to the Brownian motion of a magnetic 

particle is discussed in detail in this volume EI3~. 

The Kramers, FPT and variational approaches are different ways of locking at the 

same metastable state decay problem. These are all connected in the high barrier/low 

noise limit, as will be illustrated in the following sections. As mentioned earlier, 

generalizations of the one dimensional decay problem to many dimensions have been made 

in the context of Kramers treatmentE5~ and the FPT approachE9,14~ . It is not surpri- 

sing that similar ideas of saddle-point coordinate systems, small noise expansions, 

etc., have been independently introduced by mathematiciansE9,14 ~ and physicists~5,15~ 

sometimes without knowledge of analogous work done elsewhere. 

The rest of the article is organized as follows. In ~2, we outline the basic 

framework of the problem. The Kramers analysis for the one dimensional case is trea- 

ted in ~ 3. We describe next the one dimensional FPT approach in § 4. The variational 

treatment for the one dimensional case is then included in § 5. The generalization to 

higher dimensions, in the FPT framework, as done by Schuss and Matkowsky, and its re- 

lationship to Kramers-like ideas~5~, are discussed in § 6. Finally, some applications 

of the FPT ideas are considered in ~ 7. 

2. Basic mathematical picture 

For most part of the analysis (see, however, ~ 6), we shall restrict ourselves to 

a one-dimensional, multiplicative, but time-homogeneous stochastic process described 

by the FPE ~16~ 
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DP (x,t) b J(x,t) 
~-~ + ~x = 0 , 

where the 'current' 

(2.1) 

J(x,t) = - A(x) P(x,t) - ~ (D(x) P(x,t)) , 

A(X) a n d  D ( x )  b e i n g  t h e  d r i f t  a n d  d i f f u s i o n  t e r m s  r e s p e c t i v e l y .  

solution (at t = ~ ) is obtained by setting the current to zero, hence 

P (x) = C exp (- ~(x)) , 
o 

where C is a normalization constant, and 

~(x) = in D(x) +/dx' A(X')D(x,) 

We shall e m p l o y  i n  ( 2 . 3 )  t h e  n a t u r a l  b o u n d a r y  c o n d i t i o n s  : 

(2.2) 

The stationary state 

(2.3) 

(2.4) 

P (+ oo ) = 0 (2.5) 
o -- 

It may be noted here that if one specializes to the case of an additive stocha- 

stic process, D(x) is a constant, and 

P (x) = C' exp (- Fax' A(x')/D) (2.6) 
o 

In addition, if the so-called 'potential condition' is satisfied, i.e. El0] 

~u(x) 
A(x) = ~x ' (2.7) 

then, 

Po(X) = ~ exp (- U(x)/D) , (2.8) 

whe[e ~ is yet another normalization constant. In the conteXt of an 'equilibrium' 

problem, (2.8) has the familiar structure with D being proportional to the thermal 

energy kBT. 

Coming back to the general case of (2.3) and (2.4), we shall direct our atten- 

tion to a bistable potential indicated schematically in Fig.l. The point Xs, in the 

one dimensional case,is a maximum of the 

potential. However, we use the subscript 

s to indicate that X is actually a saddle 
s 

point in the more general context of a mu- 

ltidimensional process ( § 6). As mentioned 

in § i, our analysis is restricted to high 

barrier/weak noise limit which implies that 

A(Xs)/D(Xs) is 'suitably' small. The ques- 

tion we want to answer is : starting 

from an arbitrary initial distribution 

i.e. P(x,t=o) = Pinit(x), how long does 

one have to wait for the probability to 

evolve into Po(X), given by (2.3) ? 

~ m  1 3: S Xm 2 
Fig.l. Sketch of ~(x). The point Xml 

is a metastable minimum, Xm2 is 
a stable minimum, while X s is 
an unstable maximum. 

The sequence of time development is expected to 
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t -o  

~C = xml 
! . 

3Cm 2 Xm I Xm 2 

Fig. 2 The development of the probability. The quasistationary distribution P (x) 
is expected to be reached'very quickly' (ts>>tqs). qs 

look like the one depicted in Fig.2. It is intuitively expected (and the expectation 

can be substantiated by WKB-type arguments El7~)that the time t to reach the quasi- 
qs 

stationary distribution is much shorter than the time t to reach the final stationary 
s 

distribution, in the large barrier/weak noise limit. We are, of course, interested in 

studying only the slow evolution of the probability between t and t . 
qs s 

3. Kramers' argument 

In the regime tqs ~ t ~ ts, the probability P(x,t) is so slowly varying that its 

time derivative can be neglected. Hence from (2.1) and (2.2), the current can be re- 

placed by J which is independent of x and is a slowly varying function of t. Thus, 
qs 

in this domain of time-evolution, population of the state xml is depleted while that 

of 'state' Xm2 is increased at an almost steady rate, in view of slow diffusion ( or 

probability leakage) across Xs. Denoting by Pqs(X,t) the probability in the quasi- 

stationary region, we have from (2.2) - (2.4), 

Jqs exp ( ~ (X)) ~X@ { exp ( QI 9 (x)) Pqs(X't) } (3.1) 

where 

~(x) = <i>(x) - in DCx) (3.2) 

NOW, consider two 'small' regions x m -AXl~ x~ Xm+ Ax I and Xm2-Ax2~< x~< 
, 1 , 1 

+/kx2, and define the density of points in these regions by Xm 2 
x + Ax 1 ] ml 

n I -= dx Pqs (x,t) (3.3) 

xml - fi x 1 

A similar expression defines n 2. It is evident from Fig.2 that Pqs(X,t) is sharply 

peaked around xml and Xm2 Accordingly, 

(3.4) 
x - x<x +A x t) exp(- (~(x) -~(x ]) •Xl< 

m I m I m I 1 Pqs (x,t) ~ Pqs (Xm I' 
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An analogous expression holds in the region around x 
m 2 

n I ~ I.P± qs(Xml't)exp(~(xml)), 

Combining (3.3) and (3.4) 

(3.5) 

~ xml+A dx exp(-~(x)) 
x 1 

where I 1 H 

x - ~ x 1 
m 1 

The expression for n 2 is obtained from (3.5) upon replacing 1 by 2. 

from xml to Xm2, and using (3.5), we have 

(3.6) 

Integrating (3.1) 

Jqs I ~ - (3.7) s nl/II n2/I2' 

x 
m2 

where I z exp (~(x)) dx. (3.8) 
s 

x 
m 1 

Finally, we note that at this level of approximation, most of the system points are 

expected to be concentrated only around xml and Xm2. Thus 

Jqs ~ nl = - n2" (3.9) 

Combining (3.7) with (3.9), we arrive at the familiar rate equations 

where 

61 = - 62 =--cO12 n I + CO21 n2, (3.10) 

0312 : : -i = -i, = ~ -i = -i 12 (IsIl) 0921 21 (IsI2) (3.11) 

The times ~12 and ~21 are the so-called reaction times of Kramers which measure the 

times of passage from x --+ x and x ~ x respectively. 
m I m 2 m 2 m 1 

In the high barrier/weak nolse limit, the integrals in (3.6) and (3.8) can be 

evaluated approximately by the method of steepest descents, and we obtain 

O912 = ~-112 ~(2jI]l( ~''(xml ) I ~"(%)I) ½ exp<-(~(~s)-~(xml )) (3.12) 

The expression for O321 can be written down from (3.12) by interchanging 1 and 2. 

Here ~ is defined by 
s 

o, < 0 (313) (X=Xs) = (X=:s) 

It may be remarked that the analysis given above is more general than the origi- 

nal Kramers' treatment in that a multiplicative process or x-dependent diffusion has 

been considered. In the special case of an additive process for which the potential 

condition is satisfied (cf., (2.6)-(2.8)), (3.12) yields the familiar result E6~ 

~12 ~ D(2~) -l(u,,(xml) iU,(x s)l )½ exp(-(U(x s)-U(xml))/D). (3.14) 
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4. First Passage Time (FPT) estimates 

In this section we shall outline briefly the FPT method for one dimensional 

s t o c h a s t i c  p r o c e s s e s  i n  o r d e r  t o  p u t  i t  a t  p a r  w i t h  t h e  K r a m e r s  t r e a t m e n t .  L a t e r ,  

in ~ 6,7, we shall return to a more elaborate discussion of FPT calculations in the 

context of multi-dimensional processes and m e n t i o n  a f e w  p h y s i c a l  a p p l i c a t i o n s  a s  

well. 

Let us focus our a t t e n t i o n  f i r s t  t o  c a l c u l a t i n g  ~ 1 2  ( c f .  ( 3 . 1 1 ) ) .  The s y s t e m  

point is assumed to be initially at x at time t = o, where -~ ~ x ° ~ x s. We ima- 
o 

g i n e  t h a t  a n  a b s o r b i n g  b o u n d a r y  i s  e r e c t e d  a t  x s u c h  t h a t  o n c e  t h e  s y s t e m  p o i n t  
s 

reaches x it is removed from any further consideration. We denote by ~ (x o) the 
s 

time taken b y  t h e  s y s t e m  p o i n t  t o  r e a c h  x f o r  t h e  f i r s t  t i m e ,  h a v i n g  s t a r t e d  f r o m  
s 

x at t = o. This so called first passage time (FPT) is clearly a random variable 
o 

which varies from realization to realization. We shall later identify the mean FPT 

< ~ (-~) > with ~12 of ~3 provided 'passage' is defined in an appropriate 

manner. 

Let P(x,tEXo,O) be the conditional probability that the random process is x at 

time t g i v e n  t h a t  i t  was  x a t  t = o .  T h e n ,  t h e  p r o b a b i l i t y  t h a t  a t  t i m e  t t h e  s y s t e m  
o 

p o i n t  i s  s t i l l  w i t h i n  t h e  i n t e r v a l  - o0 t o  x ( n o t  h a v i n g  r e a c h e d  x e v e n  o n c e )  i s  
s S 

given by 
x js 

G(Xo,t) = P (x,tlXo,O) dx. (4.1) 

The q u a n t i t y  G ( X o , t )  e v i d e n t l y  e q u a l s  P r  ( ~ ( x  o) ~ t ) .  S i n c e  t h e  c o n d i t i o n a l  p r o b a b i -  

l i t y  by definition, is a delta function centred around x at t = o, it follows from 
o 

(4.1) that 

G(Xo'°) = Pr ( r[ (Xo) >/ o) = i,-0o ~ Xo~ x s (4.2) 

= o 

On the other hand, if Xo happens to equal Xs, 

'dies' immediately, hence 

, elsewhere. 

the absorbing boundary, the process 

G(Xs't) = Pr (~(Xs) >/ t) = o (4.3) 

Alternatively 

G (Xo,t =o0) = o (4.4) 

as the system point is expected to reach x at least once when t =oo . 
s 

Since G(Xo,t ) is the probability that passage has not occurred: q-(Xo) ~ t, and 

l-G(Xo,t) is the probability that passage has occurred, the mean FPT is given by 

Tp (x o) = <~ (Xo)>= -Jt G(xo,t)dt = f G(Xo,t) dt, (4.5) 

0 0 
where the last step follows upon integration by parts and from (4.4). Our next task 

is to derive an equation for Tp(Xo). This can be done easily if one uses the back- 

ward FPE ~i0~ which reads 
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~t ~ P (x, tl x o, o) = -A (Xo)~o P (x, tl x o, o) +D (Xo)~ 2 

o 
Therefore, from (4.1) (4.5) and (4.6), we have 

P(x,tlx ,o). 
o 

(4.6) 

L # Tp (Xo) = -i 
x o 

+ 
where the a d j o i n t  o p e r a t o r  L 

x 
9 

L % _= D (Xo) ~ 2 
x 2 
o ~ x  

o 

The solution of (4.7), consistent with the boundary conditions: 

is the one associated with the backward FPE: 

- A(Xo) ~x " 
o 

(4.7) 

(4.8) 

G(x,t) = o at x = x (absorbing boundary) 
s 

-- G(x,t) = o at x = -oo(reflecting boundary), (4.9) 
~x 

can be written as 

x s x l 

Tp(X) = ~ dx' exp (~ (x') J dx" exp (- ~(x") (4.10) 
x 

Equations for higher moments of r[ (x) can also be derived from the distribution of 

FPT. It turns out EI2~ that in the high barrier/weak noise limit, 

T ~r)(x) = <r[r (x)> ~- r! <~(x)>r = r! (T (x)] r. (4.11) 
P P 

This corresponds to a distribution for q-that for large lifetimes is 

-1 - (x) 
P(q~) "- ETp(X) ~ e ~(x)/Tp (4.12) 

Evaluating the integrals in (4.10) by the method of steepest descent, in the large 

barrier limit and setting x = -~ , we obtain an answer for q-12 (= T (-oo)) which is 
P 

one-half the Kramers estimate (cf. (3.12)). This discrepancy is, however, not serious 

and can be removed if the absorbing boundary X is taken at + oo , which is of course 
s 

the more appropriate limit, for a meaningful comparison with Kramers result. 

5. Variational treatment 

We may write the solution of the FPE (cf.(2.1) and (2.2) as 

P(x,t) = aoPo(X) + Z a n pn(x) exp (-~n t), (5.1) 
n>o 

where the eigenvalues ~n > o for n>o. The first term corresponds to zero eigen- 

value which yields the stationary state solution (as t~0o). Comparing with (2.3), 

therefore, 

a ° = c, Po(X) = exp (- ~ (x)) (5.2) 
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Combining (5.1) with (2.1) leads to the elliptic partial differential equation 

2 

(A(x) Pn(X)) + ~ (D(x) Pn(X)) = -~n Pn (x) 
3x bx 2 

Now, the substitution : 

(5.3) 

Fn(X) = Pn(X) / Po(X) , (5.4) 

transforms (5.3) into a self-adjoint eigenvalue equation of the Sturm-Liouville form 

[ 1 8 ]  : 

~ ~ P (x) (5.5) ~x (D(x) Po(X) -~ ) Fn(X) =- n o Fn(X) 

Equation (5.5) is the Euler-Lagrange equation for the functional (with the density 

function P (x)) : 
o ~ {~Fn(X) )2 

I EFn(X) ~ = dx Po(X) [D(x)\ ~ - kn F2(X)~n (5.6) 

-OO 

Following standard procedure ~18~, the eigenvalue ~ can be shown to obey the 
n 

Rayleigh-Ritz  i n e q u a l i t y  

~n~ < K[-fn(X)] / H [fn(X)~ , (5.7) 

where 2 

( ~fn (x)) (5.8) 
KEfn(X)3 = dx D(x) Po(X) ~ x ' 

oo 

= O ~ dx Po(X) f2 (x) (5.9) H E fn(X)3 n 
-oo 

and fn(X) is some general trial function. 

In order to employ (5.7) for estimating the eigenvalue ~ one normally assumes a 
n 

particular form for the trial function f (x) in terms of certain variational parame- 
n 

ter(s) and minimizes the right hand side of (5.7) with respect to these parameter (s). 

As mentioned before, one requires only the lowest nontrivial eigen value for descri- 

bing the passage from the quasistationary to the stationary state. Thus we shall use 

the inequality (5.7) for n=l only• and drop the subscript n henceforth for the sake 

of brevity. The variational choice of the eigenfunction f(x) must be normalized and 

orthogonal to the lowest eigenfunction F (x), i.e., 
o 

~Po(X) dx = 0 (5.10) f(x) 

since F (x) is unity in the present case (cf. (5.4)). Equation (5.10) implies that the 
o 

trial function must change sign as the system point moves from the interval xml~< x~x s 

to Xs~ x ~x . 
m 2 

The first and only (to the best of our knowledge) attempt to cQrrelate the varia- 

tional treatment with the Kramers kind of approach was due to BrownE7,13~. While the 

Brown choice for the trial function is quite adequate for calculating upper bounds 
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to the eigenvalues from the Rayleigh-Ritz principle, it is not suitable for computing 

certain lower bounds given by Weinstein and KamkeEl9~ . The Weinstein-Kamke criteria, 

used in conjunction with the Rayleigh-Ritz principle, can obviously provide better 

bounds to the eigenvaluesE20~. This turns out to be possible only if the trial func- 

tion has finite first and second derivatives, a condition which the Brown choice 

does not satisfy. We shall present below an alternate form for the trial function 

which, in addition to providing Kramers-like result in the large barrier limit, yields 

also a lower bound to the eigenvalue ~ C21~ . 
~f 

Guided by the fact that ~x should be concentrated near Xs where Po(X) has its mi- 

nimum in order to keep K Ef(x)~ small (see (5.8)), we choose 

-i -i 

f(x) = fl [l+exp(-a(x-xs))3 + f2 ~l+exp (a(X-Xs)) ~ , (5.11) 

where the constants fl and f2 (which will turn out to be of opposite sign in view of 

(5.10)) can be determined from normalization and orthogonality conditions. Now, in anti- 

cipation of the fact that the Kramers - like formula should emerge in the large barr- 

ier limit, we take 

2 "(Xs) a = -b ~ • (5.12) 

i where b is a variational parameter and ~ Xs) is the curvature of the potential at x s. 

Details of the variational calculation will be reported elsewhere ~21~ . Here, we 

merely state that substitution of (5.11) into (5.7) and evaluation of the relevant in- 

tegrals by the method of steepest descent yields 

~ ~ b (l-b) -½ (6012 + 6021) , (5.13) 

where 60's are given by (3.12). Minimization of the b-dependent term in (5.13) leads 

to b=2, and hence the variational estimate for the lowest upper bound to the eigenvalue 

is 

= ~ ( + ~21 ) (5.14) v 4 6°12 ' 

which is still lower than the Kramers estimate by a factor of 4/~ ! 

6. First passage time estimates in higher dimensions 

We have presented in § 3 - ~ 5 three distinct approaches to the study of the decay 

of a metastable state. It has been demonstrated that for a one dimensional stochastic 

process the Kramers, FPT and variational methods all lead to essentially identical re- 

sult for the decay rate, in the high barrier/weak noise limit. The equivalence is 

expected to hold also for higher dimensional stochastic processes which are important 

in certain phase transitions such as in superfluidity E2~ and two-mode lasers ~22~ . 

In this section, we outline the extension of the FPT calculation to higher dimension, 

based on the work of Schuss and Matkowsky E9,14~ . 

We consider an n-component stochastic variable ~ = (Xl,X2, ........ Xn) taking an 
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initial value x ° somewhere within an n-dimensional volume Q . Generalizing the con- 

cept introduced in § 4, 'first passage' is now defined by ~ , within a given realiza- 

tion, first reaching the boundary ~Q, an (n-l) dimensional surface. The mean FPT 

satisfies an equation analogous to (4.7) : 

+ ~ (D -~2 ~ L~ Tp (x o) = V~ -~ (Xo). ~ ] Tp (x o) = -i , (6.1) 
o o O 

where, for simplicity, we consider an ~ - independent (additive noise) diagonal diffu- 

sion term [23~ and restrict ourselves to the potential case ~(~) = ~U(~). As in 

the one-dimensional case, the boundary condition imposed is (cf.(4.3)) 

Tp (x ° 6 ~Q) = 0 (6.2) 

It may be noted that, unlike in the one dimensional problem, the equation for Tp(<) 

is now a partial differential equation in n variables, so obtaining a general solu- 

tion is difficult. The strategy, therefore, would be to search for a single ( or at 

least only a few) dominant variable and ignore the others. The Schuss-Matkowsky pro- 

cedure employs just this in terms of a systematic high barrier/low noise expansion. 

The first step is to scale (6.1) by /kU, the smallest barrier height in the pro- 

blem (defined below more precisely). Thus 

-~2 -~ 
(c v~ -~(x o) v~) • (x o) = -1 (6.3) p 

o o 
where 

6-= D/ AU , ~ -= ~/AU , Tp=-Au Tp (6.4) 

In the high barrier/weak noise limit, C << i. 

Since in the limit [ --~ o the FPT is expected to be infinitely large, the basic 

idea of Matkowsky and Schuss is to isolate the singular dependence of ~ (~) on 6 and 
P 

assume the rest to be regular in { , expandable in a power series. Thus 

rF (~) = v(~) exp (K/{) , (6.5) 
P 

with v(~) = v (O) (x) + 6 v (I) (~ + ............. (6.6) 

where K is a constant. Substituting (6.5) and (6.6) into (6.3), 

(6 V~ - ~(x~ . ~ ) (v(°) (x~ + 6v(1) (~)+ ......... ) :- exp (-K/6) (6.7) 

Now, if we were to retain only the term manifestly independent of 6 , we would write 

v(O) (~) - V~ (~) = 0 , (6.8) 

which would imply that v (°) (~) is a non-zero constant(in regions where ~(~) ~ o). This 

however, would immediately contradict the boundary condition (6.2), keeping in view 

(6.5). The paradox can be resolved satisfactorily if there is at least one direction 

along which v (°) (~) varies rapidly near the surface ~ on a scale of 6 ½ in such a 

way that its second derivative times 6 is actually independent of ~ . This special 
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direction which we call z, is expected to lie along the path of the steepest descent 

from the saddle point Xs on ~. It is convenient now to switch to a new set of axes 

I / 

(~,~), centred on the point ~s' as 

indicated schematically in Fig.3. The 

unit vector ~ points inwards from the 

boundary and the other n-i directions 

= ( ~2 ..... ~n ) are normal to ~. 

For points near ~ i.e. z small, a 
s 

consistent expression to zeroth or- 

der in 6 would include only the stee- 

pest descent variation 

Fig.3. Schematic plot of equipotential 
(solid)lines and preferred axes 
(z,~)at saddle point Xs.X m is 
the minimum within the boundary 
~ (dashed line). 

~2 --~ b v(O) -~ 
( 6 a z (z,p) ~ ) (z,P) = 0 (6.9) 

~z 2 

with terms first order in 6 neglected : 

(z, ~) . ~ v,o,C~ (z,~) ~ 0 (6.10) 

For the sake of simplicity we shall now assume that the potential condition (2.7) 

holds. From (6.4) then 

a (z,~) 1 ~ U(z,~ ) (6.11) 
z AU bz 

Expanding around the saddle point ~ at z=o, ~ =o 
s 

a (z,F)~ z I U" (o) I (6.12) 
z hu 

Here the primes denote partial derivatives with respect to z, and the argument is eva- 

luated at the o r i g i n  o f  (z ,~ '~) ,  i . e .  t h e  s a d d l e  p o i n t .  

Substituting (6.12) into (6.9), and using (6.4), we have 

z 

~o 1 I U" (o)~ z, 2~ dz' (6.13) v (O) (z, ~) ~ ~/kU exp E- 2 D 

where ~ is a constant independent of ~ (cf. (6.10). From (6.4) and (6.5), the mean FPT 

in the h i g h  b a r r i e r / w e a k  n o i s e  l i m i t  i s  t h e n  g i v e n  by  
z 

1 ]U"(o) I z'2~ dz' (6.14) T (z) = ~exp (K/E) exp [- ~ D 
P o 

The remaining task is to evaluate the constant ~ . To this end, we note from (6.3), 
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exp ( -T-t-) = dnx exp (_ UJ~))u E a (~) . ~ -~ ~ (x) dnx 

~ o(~) 
= - ~ dnx ~ - E( V ~ (~)) exp (- ~ )~ , (6.15) 

P 

where we have used the potential condition (6.11) in writing (6.15) as a divergence in 

the n-dimensional space. Employing now the Gauss theorem, and noting that the normal 

to the surface ~ (at z:o) lies inward along ~, we have 

dnx exp (- ~ ) = d n-IP ~( ? ~z ~ (z,~)) exp ( - - ) ~  p D 
z= O 

: 6 AU ~ exp (K/~) J dn-i ? exp [ U(o,~ ) ~ D  ' (6.16) 

a&% 
where the last step follows from (6.14) and the definition of < . Equation (6.16) 

P 
determines ~ and hence the mean FPT from (6.14). Noting that the mean FPT corres- 

ponds to the Kramers reaction time ( ~ 3) when the initial point z lies at infinity, 

we have from (6.14) and (6.16) 

i < OT D ~j.gdnx exp (-U(~)/D) 

T =_ T (z=OO) = ~ IU"(o)l (6.17) 

P P J~Adn-l~ exp[- U(D'~)] 

Using sharp peaking arguments and assuming a minimum at ~ ~ ~ , and a saddle point 
m 

at Xs, (6.17) can be given a more compact form 

T = JT exp ( AU/D ) 
p EHn (~)~] ½ { -~ _½ ½} (6.18) 

[Hn_ 1 (P=O)] I u" (o) I 

where ~U, introduced earlier, is defined by 

A u  =_ u ( ~  s) - U(~m). (6.19) 

In (6.18), H (~ is an nxn Hessian with its elements ~2U/ ~x. ~x evaluated at ~ . 
n 1 3 n 

The expression in curly brackers is evaluated at the origin (~) of the coordinate 

system (z,~), Hn_l(~) being a similar (n-l) x (n-l) Hessian. It is easy to check 

that (6.18) reduces to the one-dimensional result discussed in ~ 4, upon replacing H 
n 

by a second derivative and Hn_ 1 by unity (see also (3.12)). For several saddle points 

on the boundary that are degenerate, i.e. have the same ~U, a sum over the curly 

brackets is taken in the denominator of (6.18). 

The result given above in (6.18) is for systems where the potential condition 

holds. We shall not deal with the 'non potential condition' ease here except to 

remark that it can be done in terms of a series expansion in 6E23~. Graham and 

Schenzle ~24~ have developed similar ideas for the stationary solution of the FPE 

describing dispersive optical bistability, in the case where the potential conditions 

to not hold. 
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The generalization of the Kramers treatment to n dimensions has also been done 

An outline of the argument follows, pointing out the similarity to the FPT E5]. 
treatment above. 

The quasistationary distribution, with steady probability flow across a saddle 

point at %, is taken to be 

p (~) = LO(x) e -U(x)/D (6.20) 
qs 

The probability current density describing this flow between wells is then 

~ = - ~ (5)) e -U (x)/D j (x) D( ~ (6.21) 

with the Fokker-Planck equation in the quasistationary limit, corresponding to V.j=0. 

The ~(x) must have constant values in either well, to enhance/suppress the two 

peaks of the true stationary distribution Po(~) = e -U(x)/D By current conservation 

requirements, Po (~) falls off rapidly around ~s' along the lines of current flow. 

~s' 
(x) must therefore vary rapidly, near to compensate. This is clearly reminis- 

cent of the behaviour of v(x) in the FPT treatment. 

In fact, the equation for ~(x) coming from V.J(x) = 0 is seen to be similar to 

the homogeneous version of (6.3) (cf. also (5.4), (5.5), in the variational case). 

Once again, the arguments of a preferred coordinate system (z,~), retention of only 

the steepest descent variable z etc., carry through for 60(~), just as for v(~) [5~. 

With hindsight, there is even some conceptual similarity between the FPT and 

the Kramers treatments. In the latter, the decay rate is the (integrated) current 

divided by the initial density of the particles in the metastable well. This is like 

an initial decay rate, maintained by replenishment of the metastable population. The 

FPT treatment equates the metastable decay rate to the mean time of first passage of 

a given realization. Thus the similiarities of both the intermediate arguments and 

the final results, is not surprising. 

7. Applications: 

We now briefly discuss some applications of the first-passage time ideas. Appli- 

cations of the variational approach are discussed elsewhere ~13~. 

The first passage time can be explicitly calculated for models of physical sys- 

tems. For example a ring laser [22~ with two counter-propagating (complex) field 

modes El, E2, obeys the Langevin equation 

~EI,2. 2) + 
~t (al, 2 - IE1,212 - ~TE2,11 El, 2 ql,2(~) . (7.1) 

Here a I and a 2 are pump parameters for the two modes, ~ is a mode-coupling constant 

2 > ~ > i, andql(t) and q2(t) are (complex) delta-correlated random forces, of scaled 

strength 2. 

The potential conditions are satisfied, and the potential ~22,4~ depends only on 

the intensities Ii, 2 and not on the phases @ 1,2' where El, 2 = ~i,2 ei@'~ It 
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is given by 

U(II,I 2) 
1 1 1 2 1 12 1 

= ~ alIl + ~ a212 - ~ Ii - 4 2 - ~IiI2" (7.2) 

For the homogeneously broadened case,~ >i, there are wells at I 1 = 0, 12 = a 2 and 

at 12 = 0, I 1 = a I, with a saddle point at (Ils,I2s) = (~a2-al)/(~2-1), 

(~al-a2)/(~2-1) . An estimate of the first passage time has been made E24~. The 

12 dependence of PO(II,I2) is first integrated out and the one-dimensional Tp 

formula of (4.10) is used, with an Ii-dependent diffusion constant ansatz to allow 

for the higher dimensionality of the actual problem. This yields, for large pump 

parameters, 
2 

j~½ e ~ (~2-i) Ils 
T ~ -- (7.3) 

P 2 (2_1 )  3/2 12 
l s  

Similar results can be obtained, using the systematic Schuss-Matkowsky formalism 

applied to the four-dimensional case ~25]. 

A direct measurement of 'dwell-times' within the wells centred at I 1 = 0 (off 

state) and I 1 = a I (on state) has been made ~24~. The boundary is defined as at Ils. 

A photodetector measures the intensity of the selected (I I) laser mode, with Ii> Ils. 

A limiter changes the photodetector output to a series of rectangular pulses of 

variable duration r[0N , that is the 'dwell time' in the well. The mean dwell time is 

equated to the mean first passage time from the 'on' to the 'off' state, T = <qFON ~ __ 
P 

T varies from milliseconds to minutes, depending on the parameters, and is in rough 
P 

agreement with (7.3). The dwell-time statistics are in good agreement with (4.11). 

First passage times also enter naturally in estimates of the extent of hyste- 

resis phenomena analogous to superconducting and superheating ~4 ]. Consider a first 

order phase transition, either dissipative or non-dissipative~ described by a (one- 

component) order parameter x, with a drive parameter ~ and a delta correlated random 

force f(T) of strength 2D. The Langevin equation is 

= -A(x,~) + f(t) ~ U (x,~) + f(t) (7.4) 
%X 

The stationary states x (~) , defined by 

A (~, IU-) = 0 (7.5) 

have three branches if ~ is within the range ~2 < ~ < ~ci" x(~) is an s-shaped 

curve on an x-~ plot, with the backward bending branch unstable, corresponding to 

a maximum of the potential U(x,~) . The two forward-bending curves correspond to 

local minima of U(x,~) , that move relatively, up and down, as ~ is varied. The 

higher, or metastable well disappears at the spinodal points ~= ~el or ~c2' 

defined by a vanishing relaxation rate T-Ioc ~ U(x,~) /~2 = 0 at the metastable 
r 

minimum. 

At some ~ = ~X ' between ~c~ and ~c2' the two well-depths are equal 

and thermodynamic 'Maxwell Construction' behaviour says that a system should jump 
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to the absolute minimum of U(x,~) as soon as ~ >~Z. But hysteresis can occur. 

The question is, what determines when the jump actually takes place? 

The answer turns out to be dependent on three relevant time scales. The rates 

A the rate of change of the control parameter; (ii) the 'hop-over' or first (i) are 

passage rate T-l; and (iii) the roll-back or relaxation rate T -I in the metastable 
p r 

well. The basic idea is that ~ must raise the metastable well too fast for a hop- 

over, but slow enough so the system sits near the moving well minimum (adiabatic 

following). These two requirements define the brackets of a 'hysteresis window' 

for A" 
For hysteresis to occur, F-id]) /dt > T -I where P ote -U/D- depends on time only 

s -s p s 
through ~ (t). For adiabatic following, the deviation from the minimum ~(t) = x(t) - 

x(~(t)) must be smallj~/x<<l, and not increase in time,~ = o. This yields the con- 
a 

dition E4 ~. 

~ -1 -1 
I > > T (7.6) 

T ~ (~ U(x,~)/~) P 
r 

The first inequality, involving Tr, is a condition that the hysteresis state has a 

simple description, in terms of the most probable values, x(~), alone. 

The second inequality, involving Tp, sets an upper bound on the degree of hyste- 

resis that can occur. At the iimit of metastability, the first passage time drops to 

zero, as the intervening barrier disappears E4~ : 

½ 
T 0C (~- ~ci,2 ) (7.7) 
P 

The inequality of (7.6) will be violated at some earlier ~ , that is closer to p ci,2 

if~ is larger. For A = 0, infinitely slow variation, the hysteresis window shuts and 

the Maxwell construction obtains. 

Numerical estimates of first passage times for condensed matter systems are often 

extremely large, when one-dimensional formulae corresponding to uniform states are 

used. The higher dimensional extensions of Section 6 could be used to include spatial 

variation and droplet formation, leading to improved estimates of T and the hystere- 
P 

sis window. 

In conclusion, the Kramers, variational, and first-passage time formalism are 

three complementary and essentially equivalent ways of estimating metastable lifetimes, 

and can be usefully applied to a variety of systems in quantum optics and condensed 

matter physics. 
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