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Abstract 

We describe the mathematical problem of deconvolution and discuss 3 classes of meth- 
ods to solve it: (1) methods working in Fourier space. (2) methods working in image 
space, with smoothness constraints, and (3) methods for image improvement without 
true deconvolution. The highest resolution can be achieved by class-2 methods. 

1 Introduction 

Deconvolution as a means of improving the resolution of instruments is well estab- 
lished for more than a century, Lord Rayleigh being the first to treat the problem 
mathematically. Soon it was recognized that the most reliable method of resolution 
increase was to use better instruments. The interest in mathematical methods has 
been revived in recent years (see, e.g., Pfleiderer and Reiter 1982). This is because 
the performance of observing instruments has reached a maximum in many fields, 
and cannot be improved much by building larger or better instruments (or only with 
excessively high costs). So one should extract as much information from the data 
as possible. Also, the increase in computer performance permits the use of methods 
with large numerical effort. One of the most favoured methods presently used is the 
maximum entropy method MEM. For radiointerferometric observations, the method 
most often applied is CLEAN, of which several improvements over the original version 
of the seventies (HSgbom 1974) exist. 

In Sect. 2, we state the mathematical problem. Sects. 3- 5 describe classes of decon- 
volution methods which are discussed in Sect. 6. 

2 The  deconvolution problem 

The convolution/deconvolution equation in image space is, in discrete form, 

/ ,  = gJ ,s + e , ,  (1) 
1 

where i and j are pixel numbers (which, in a two-dimensional problem, would each 
have two components), .f is the observable signal (data), h the point spread function 
PSF or beam (depending, in a true convolution, only on the distance between pixels 
i and j),  e the error, and g the true signal, approximated by a set of point sources 
at pixels j .  The data pixels i -- 1 , . . . ,  I and the signal pixels j = 1 , . . . ,  J need not 
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necessarily have the same size. It is by no means necessary at this stage to assume 
a special form of the error distribution, e.g., that  the noise data  ei are independent 
from each other or from the source distribution or the data. In the convolution, the 
signal g is convolved with the PSF h and noise e is superimposed to give the data  f .  
In the deconvolution, the solution of the problem consists of finding a model set of 
signals {m j} such that  the residuals 

: =  f,  -  . jh,j (2) 
J 

are left equal to the errors. The true solution rl = ei cannot be found because e is 
not known. A possible or acceptable solution is one for which the statistics of the set 
{rl} is sufficiently similar to what is expected for the error distribution {el}. 

The Fourier transform of Eqn. 1 is 

Fk = Gk.  Hk + E k ,  (3) 

where the index k stands for a spatial frequency uk or frequency range [uk, uk + duk]. 
F,  G, H,  and E are the coefficients of the transform of f ,  g, h, and e, respectively. 

Consider a point source of unit strength at pixel j ,  with Fourier transform Gk(j). 
Then 

Hki := Gk(j)" Hk (4) 

is the Fourier response to that  source. From the linearity theorem, it follows that  the 
response to a source of strength gj is gjHkj, and the response to a set of point sources 
is ~ i  giH~J" That  is, another and entirely equivalent form of Eqn. 3 is 

F~ = Z g j H ~ j  + E~ , (5) 
J 

which comprises, if seen as a deconvolution problem, a linear system of K equations 

Rk = F ~ -  Z m i H k j  , k =  k l , . . . , k g  (6) 
i 

for the J unknowns m. Here, the R's are the Fourier residuals. Again, the true 
solution Rk = Ek cannot be found but only possible ones in which the statistical 
properties of the residuals are accceptable. Accordingly, there are infinitely many 
possible solutions, both for Eqn. 2 and Eqn. 6. 

3 Fourier m e t h o d s  

They work completely in Fourier space and use Eqn. 3. Many PSFs, in particular 
Gaussian ones, have Fourier coefficients which are noticeably different from zero only 
within a finite frequency interval [-uc,  uc], thus comprising a low pass filter. A good 
example is a single-dish radio observation. Higher frequencies are not transmitted by 
the instrument. Low frequencies are well transmitted while intermediate frequencies 
are partially filtered out. 
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Bracewell and Roberts (1954) introduced, for that case, the so-called principal solution 

Gk = Fk/H~ for lukl < uc ; (7a) 

Gk = 0 otherwise. (Tb) 

It tends to show oscillations of frequency ~,, uc in the image-space solution (Fourier 
transform of G) remindful of interference patterns, and negative values around pointed 
positive ones - a kind of Gibbs phenomenon. This is why a constraint of non-negativity 
can much improve the solution. 

For a more complicated PSF, the principal solution can be generalized to be 

Gk = Fk /gk  for I~kl > c ,  (sa) 

G~ = 0 otherwise, (8b) 

where C is a suitably small constant. Eqns. 7a and 8a reverse the partial filtering of 
coefficients caused by low values of H and are, therefore, called "inverse filtering". 

The sharp cut-off can be somewhat smoothed. In terms of a least-squares optimiza- 
tion, the best approach is the Wiener filter (Wiener 1942, Helstrom 1967) which was 
introduced into astronomy by Brault and White (1971): 

Gk - F~H; (9) 
HkH~ + ~ ' 

where @ is the ratio of the spectral densities of the signal and the noise. @ is not 
known but can be reasonably estimated. 

Most Fourier methods have the disadvantage that they put G -- 0 for those frequencies 
which were lost in the process of observation, zero being the most non-committal 
default value. They are, therefore, unable to recover very steep features and to avoid 
Gibbs phenomena. 

Some iterative methods work in image space but nevertheless are Fourier methods 
inasfar as they converge to the inverse-filter solution (Frieden 1975). In order to 
avoid explosion of high-frequency components, the iteration must be stopped before 
convergence at some optimum point, or some other measure must be introduced 
(Jansson et al. 1970). We mention two methods: 

Van Cittert's (1931) algorithm can (with use of the same pixels i for data and signal) 
be written as 

mi(O) = O, mi(n-~ 1) ---- mi(n) + r i (n) ,  (10) 

where n is the iteration number. The method has been used, e.g., in solar physics 
(Wittmann 1971), in molecular beam scattering (Siska 1973), in geophysics (Ioup and 
Ioup 1983). 

The algorithm of Lucy (1974) is, actually, not a pure Fourier method. It iteratively 
estimates the inverse beam k := h -1 which reproduces the signal when the data is 
convolved with it: 

mj(n)h~j (11) 
mj(n  -F 1) -- Z. f /k j~(n)  , kji(n) - ~-~lml(n)hi l 

i 
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With the improvement of other methods and computer availability, it seems that 
pure Fourier methods are somewhat outdated and will be used only in some special 
applications (Subrahmanya 1980). 

4 Image-space methods with smoothing constraint 

As long as d _ I or d > K, Eqns. 2 or 6 can be solved for exactly vanishing residuals. 
This noise-fitting procedure would give an excessively oscillating solution, coinciding 
with the inverse-filter solution without cut-off: The high frequencies of the solution, 
after being strongly damped by the convolution with the beam, still have to reproduce 
the finite high-frequency amplitudes of the noise. Obviously, such solutions are not 
acceptable. 

In order to find an acceptable solution, one has to use Eqn. 2 or 6 in a slightly modified 
form: The lefthand sides are first artificially neglected in order to have a well-defined 
linear system of equations but then the system is not solved exactly but only approx- 
imately. For selecting one of the infinite number of acceptable solutions, one has to 
introduce a constraint. Since small-scale structure in the true signal is damped out 
by the convolution, it cannot be recovered from the data with any certainty. There- 
fore, the constraint should suppress such features, selecting essentially the smoothest 
solution compatible with the data. A non-negativity constraint is also quite helpful 
(Biraud 1969) but is, depending on the problem, not always possible. 

There are no standard methods for solving a linear system of equations approximately. 
Also, a nonlinear constraint destroys the linearity. Therefore, each method uses a 
different kind of iterative algorithm, adapted to the constraint. In most methods, 
the underlying philosophy is a least-squares fit. Then the residuals should resemble 
a normal distribution with average zero and a given variance which is known or can 
be estimated from the measuring error. For example, MEM deconvolves to a certain 
value of X 2 or to a more refined error statistics (E 2 distribution: Bryan and Skilling 
1981; position-independent distribution: Reiter and Pfleiderer 1986). 

While the algorithm actually used is generally only of marginal influence on the 
result, the choice of a good smoothness constraint is essential. Some authors stress 
the necessity for a convincing constraint philosophy, as non-committance or simplicity, 
while others consider every constraint which provides a sufficiently smooth result as 
a good one (Nityananda and Narayan 1982). 

Oscillatory solutions will always result in large values of the second derivative of 
the source distribution. Minimizing the second derivative in a least-squares sense is, 
therefore, a good constraint and has been used by a number of authors (Phillips 1962, 
Tikhonov 1963, Twomey 1963, Turchin and Turovtseva 1974, Tikhonov and Arsenin 
1977, Subrahmanya 1980, Basistov e ta / .  1979, Jonas 1985). That this constraint 
seems to be not much used nowadays is probably not a result of the constraint being 
inferior but rather a result of the numerical algorithms used being inferior. 

Another feature of oscillatory solutions is that some pixels have unnecessarily large 
content, which is recognizable, for example, by a large square. Minimization of the 
sum of squared pixel contents will again avoid such cases and thus produce a smooth 
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solution. This is the constraint of the so-cailed Smoothness-Stabilized CLEAN or SSC 
(Cornwell 1983). The method can also be described as an (unconstrained) deconvolu- 
tion with a modified beam which is the PSF with a central peak added. This is why it 
is also called Prussian-Helmet CLEAN or Prussian-Hat CLEAN. Other powers of the 
pixel contents than the second have also been discussed. For example, a maximization 
of the sum of square- rooted pixel contents is about as good. 

Similarly, one can consider differences in the contents of adjacent or nearby pixels 
as unsmooth and try to minimize those differences as a function of the distance of 
pixels. This constraint can be formulated as giving a minimum of information on 
small-scale structure which was partly or wholly lost in the data-collecting process 
by the smoothing effect of the convolution with the PSF, hence the name Minimum 
Information Method MIM (Pfleiderer 1985, 1988). The derivation of a corresponding 
expression for structural information from general premises, such as invariances, will 
be given in a forthcoming paper (Pfleiderer, in preparation). The method is related 
to SSC. In particular, it also uses a kind of Prussian Helmet PSF. 

Maximum entropy is characterized by a different approach to the question what 
"structure" is and what kind of structure should be suppressed. The philosophy of 
MEM has been described in a large number of papers (see, e.g., Jaynes 1957, Frieden 
1972, Ables 1974). The original main disadvantage of MEM, viz. the large size of the 
computer program which made MEM inaccessible to the average user, is now much 
eased by the availability of more compact programs and larger computers. 

MEM has been the most successful deconvolution routine so far, with applications 
to a wide field of problems, as main beam deconvolution, photography (Bryan and 
Skilling 1981), interferometry (Wernecke 1977, Gull and Daniell 1978, Nityanda and 
Narayan 1982, Sanrom~ and Estalella 1984), incomplete data (Gull and Daniell 1978), 
spectral analysis and time series (Jensen and Ulrych 1973, Komesaroff et al. 1981), 
computer tomography, seismology. 

5 C L E A N  

This method, dating back to HSgbom (1974), was specially devised for handling 
incomplete interferometric radio data. In image space, the incompleteness of Fourier 
data can be described by a beam with marked and extended side lobes ("dirty beam"), 
giving rise to a distorted image ("dirty map"). CLEAN removes, by deconvolution, 
the side lobes without, however, being a true deconvolution method. The result is 
not a model of the source distribution (to be observable with a perfect very large 
instrument) but rather a model of what would have been observed with a single dish 
of the same size as the interferometer ("clean map"). That is, it is a data model 
and not a source model which would need convolution with a beam to reproduce 
data. One could also say that the missing Fourier coefficients are interpolated but 
not extrapolated. 

The dirty beam hq is divided into two parts: The "clean beam" hl~ ) which is essen- 
tially the main lobe, or the response of a correspondingly large single dish to a point 
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source, and the sidelobes and main-beam distortions, or "dirt" hl~): 

= ) + ) . ( 1 2 )  

The original image-space data  f~0) ("dirty map") is deconvolved to a source map 
{ m  i }  but (in the original version) without additional constraint. The deconvolution 
result cannot be used directly because it is not smooth enough. Owing to the fact 
that  sidelobes tend to be more extended or at least not less extended than the main 
lobe, a smooth "image", more or less free of sidelobe effects, can be recovered by 
convolving the source map with the clean (or "restoring") beam. One actually ends 

up with an improved (or "restored") data map f~l) ("clean map") 

f~l) ~ .(1) f(0) ~'~ .(2) = ~ m j a i j  -t- rl = -- ~ m i n i j  . (13) 
J J 

The method is quite ingenious as it avoids such difficult questions as whether or not 
a smooth image is also a true image. It was also the first method not to neglect 
missing Fourier coefficients but to choose them according to a reasonably smooth 
image. Nevertheless, it definitely does not increase the resolution. Therefore, several 
improvements have been proposed of which we mention only two. First, one can 
restore with a clean beam that  is decreased in size. This is equivalent to including 
the outer parts of the main lobe into the dirt. Second, one can introduce a constraint 
such that  the deconvolution result is smooth enough to be directly used. This is done 
in the SSC. 

CLEAN has as yet mostly been used in interferometry but at least some of the modern 
versions are suitable for other problems as well (Becker and Duerbeck 1980). 

6 Comparison of  methods 

There are many deconvolution methods, of which we have mentioned only some, 
and all have different difficulties. It would certainly be wrong to try to make a 
linear order of successfulness for the available methods. Even if a method gives a 
result that  looks "good" (meaning that it does not contain obviously improbable or 
impossible features), it may not be the most reliable one. In general, the best advice 
as to which methods should be used is to try several ones, and compare the results. 
Such procedure will quite often provide more information on the probable source 
distribution than the selection of just one method. 

However, some general statements are nevertheless possible. First, no method is 
hitherto sufficiently understood to know exactly all the advantages and disadvantages, 
and to know how would be the best interpretation of the results in terms of reliability 
(as the question whether a slightly extended feature should be interpreted as an 
unresolved (nearly pointlike) source or as a resolved one). Or to give another example: 
Inspite of a wealth of theoretical papers on MEM, there is still not even agreement 
on which form of the entropy should be used. More dangerously, it is not known 
how much one part of the map may influence the results on other parts of the map. 
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This is because entropy is a "universal" constraint, not dependent on any details of 
the measurement. One only knows, from many practical examples, that the mutual 
influence seems, in most cases, small enough to be neglected. 

There is always a competition between smoothness and resolution. The grand design 
of a map is most easily recognized if the map is very smooth but some essential details 
may be lost. High resolution tends to overresolve noisy data. The best compromize 
is probably MEM, with a very smooth image and some superresolution (= resolution 
beyond that of the data). The claim of some MEM theorists that MEM yields a 
maximum in possible superresolution is not true. The best resolution so far has been 
obtained by MIM which, on the other hand, tends to yield a noisier result than other 
smoothing-constraint methods. The resolution of optimized versions of CLEAN is 
comparable to that of MEM. 

The opinion is widely held (see, e.g., Koch and Anderssen 1987) that the result of a 
deconvolution should be unique (concave problem). It has been shown that the one- 
constraint MEM (but not two-constrained versions as that of Reiter and Pfieiderer 
1986) as well as the basic CLEAN (Schwarz 1978, Marsh and Richardson 1986) do 
indeed converge to a unique result, independent of the actual realization of the method 
in the form of a specific numerical procedure. However, uniqueness is probably quite 
unimportant. Different methods do give different results, and still we are often unable 
to choose one as being better than another. The only criterion for the goodness of a 
solution is whether or not it looks "good" enough in the sense stated above - unless 
one can compare with better data. However, the most interesting use of deconvolution 
is, of course, that for the best available data where such comparison is not possible. 
Non-unique methods do, however, have the disadvantage that the result may depend 
on the numerical procedure. If different procedures produce different results within 
one method, one could consider them as varieties of a method and try to find out 
which variety, if any, works best. The iterational Fourier methods are not unique, the 
cut-off point of the iterations being empirically determined. 

One mandatory feature of uniqueness in constraint methods is that the optimum 
Lagrange parameter connecting the data fit and the smoothing constraint must be 
determined by the method itself. It seems to the present writer that this is not 
necessarily a good approach. Depending on the questions asked, one and the same 
set of data may be used to emphasize the grand design (large smoothing) or fine 
details (little smoothing). Some methods therefore allow the choice of the degree 
of smoothing. A consistent theory of structure (Pfleiderer, in preparation) seems to 
make the free choice even mandatory. 

Unfortunately, all methods which are such simple that they would easily be pro- 
grammed are also inferior to others. In practice, one therefore has, generally, to rely 
on what methods an available program library has to offer. 
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