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Abstract  

The existence of various solitary wave solutions to the (nonintegrable) discrete 
nonlinear SchrSdinger equation is demonstrated numerically. 

1 I n t r o d u c t i o n  

The discrete nonlinear SchrSdinger (NLS) equation appears in numerous applications 
of nonlinear dynamics [1, 2, 3, 4]. In these applications the nonintegrable discrete NLS 
equation is well approximated by the continuous cubic NLS equation which has well known 
soliton solutions [5]. A numerical time integration of the discrete NLS equation with the 
soliton solution to the continuum approximation used as initial condition suggests that a 
stable solitary wave may exist [6], although the resulting solution is not a perfect solitary 
w a v e .  

The purpose of this paper is to find families of solitary wave solutions to the discrete 
NLS equation numerically. This is done by using a very efficient spectral collocation 
method coupled with path-following and bifurcation techniques [7, 8, 9, 10, 11]. This 
method allows us not only to find the expected solitary wave corresponding to the standard 
NLS soliton, we also find "dark" and multiple solitary waves as well as periodic travelling 
w a v e s .  

The discrete NLS equation we will be concerned with is 

• dAj 
*--~ + 7[AjI2Aj + Aj+I + Aj-1 = 0 (1) 

with periodic boundary conditions Aj+L = Aj, where L is the number of lattice points. 
Hence, all the solutions we find are periodic with period L. For large L we can expect to 
find good approximations to solitary waves which have infinite period. 

Eq. (1) has two constants of motion [12], the Hamiltonian 

L 

n = - E ( ~ I A j l  4 + Aj+IA; + A;+xAj) (2) 
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with the canonical variables Aj and iA~, where A~ is the complex conjugate to Aj, and 
the norm 

L 
N = y]~ ]Aj[ 2. (3) 

j=l  

Hence, Eq. (1) is integrable when L = 2, a nonlinear dimer [13], but nonintegrable for 
L > 2 [14]. 

Throughout we will normalise Eq. (1) such that N = 1. Note that this is equivalent to 
normalising the parameterless discrete NLS equation such that N = 7 which is sometimes 
useful in the numerical calculations. 

The continuous NLS equation 

• Ou 0 2 u 

+ lul2u + 7 =  = 0 (4) 

reduces to Eq. (1), with 7 = h2, under the finite difference discretisation 02u/O2x --* 
(uj+l - 2uj + uj_a)/h 2 followed by the gauge transformation uj = Aj exp ( -2 i t / h  2) and 
the scaling of time t --* h2t. Here h is the distance between adjacent lattice points. Thus, 
the nonlinearity 7 = h2 should be small in order that Eq. (1) be a good approximation to 
the NLS equation (4). 

As a finite difference approximation to the NLS equation, the equation 

• dAj + A j_l 
z--~- + 7JAil 2A~+a 2 + Aj+I + Aj_~ = 0 (5) 

which also reduces to the NLS equation in the continuum limit is a better approximation 
in the sense that it is completely integrable with soliton solutions which have been found 
by using the inverse scattering method [15, 16]. However, here we will study Eq. (1) in 
its own right as a model for several discrete physical systems. 

2 N u m e r i c a l  M e t h o d  

We are interested in travelling wave solutions to Eq. (1), i.e., guided by the form of the 
soliton solution to the NLS equation, we will seek solutions of the form 

Aj(t) = A( j  - ct)e i(kj-°'O = A ( z ) e  i(kj-~°O (6) 

where c/h is the velocity of the envelope of the travelling wave. The periodic boundary 
conditions A(z + L) = A(z) requires k to be of the form 

2 rm 
k _  L 

where m is an integer. With the ansatz (6) inserted into (1) we find that A(z) must satisfy 
the complex nonlinear differential-delay equation 

- icA'(z) + (kc + w)A(z) + 7]A(z)12A(z) + eikA(z + 1) + e-ikA(z - 1) = 0. (8) 

The solutions to Eq. (8) are approximated by the finite series 

A(z) ,~ ~ % cos 2pTrz 2prz - - ~  + i bp sin (9) 
p=0 p=l  L ' 
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where % and bp are real coefficients which are determined by requiring that  Eq. (8) be 
satisfied in n collocation points with the approximate solutions (9) inserted [10]. Thus 
Eq. (8) is reduced to a set of 2n real, nonlinear, algebraic equations with 2n unknowns, 
which can be solved numerically by path-following methods which are based on an Euler 
predictor/Newton-Raphson iteration scheme [7, 11]. It is also possible to detect bifurca- 
tion points and path-follow bifurcating branches as is demonstrated in the next sections. 

3 Stat ionary Solutions 

The numerical procedure described in the previous section requires a suitable starting 
guess. This can for example be a simple analytical solution or a solution to the continuum 
approximation to Eq. (1). It turns out that  the constant solutions of Eq. (8), A(z )  = ¢ ,  
are very useful as the interesting solitary wave solutions bifurcate from these solutions. 
The constant solutions of Eq. (8) will be referred to as stationary solutions [12] as they 
correspond to the solutions to Eq. (1) 

Aj ( t  ) = ~ ie  - 'm  (10) 

with ~j  = ¢ exp( ik j )  and ~'l = kc + w. 
By inserting A(z )  = ¢ into Eq. (8) and using the normalisation N = 1 we obtain the 

following relation between the parameters for the stationary solutions: 

V kc - 2 cos k. (11) 

In order to find possible bifurcation points we perturb the stationary solutions by a 
periodic function a(z) ,  la(z)l << [(I)[, 

A(z )  = ¢ + a(z).  (12) 

If a(z)  is expanded as a(z)  = ~ p  xp e x p ( 2 i r p z / L )  + i ~ p  yp exp(2i~rpz/n)  and if terms of 
order O(lal 2) are neglected when (12) is inserted into (8) we find for (~2 = 1 /L ,  after some 
algebra, that the following matrix equation must be satisfied: 

71Lif t  a yp 0 ' 

where 
2~rm. 2~'p 

----- cos --~---(cos - Z -  - 1), (14) 

7rpc 2 r m  . 2~rp 
/3 - L - sin ~ sin L " (15) 

Bifurcation points occur where the determinant is 0, i.e. when the nonlinearity ")' is 

V = L ( ~  - 5). (16) 

Near the bifurcation points the bifurcating solutions are approximately 

A(p)(z) ¢ + eji.p /L (17) 
for ]¢1 << I¢1 • Provided the size of the lattice, L is sufficiently large A(P)(z) will evolve 
into a p-solitary wave solution as 7 is increased. This is demonstrated numerically in the 
following section. 
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4 Solitary Waves 

The path-following method allows us to find a whole family of solutions as one parameter 
is varied. In the following the varying parameter will be w while c will be fixed. Fig. 
1 shows paths of p = 1 solitary waves for two different velocities. They both bifurcate 
from stationary solutions which are represented by the straight lines according to (11) in 
the figure. The numerical solutions are obtained for n = 25 modes in the expansions (9). 
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Figure 1: Solitary wave solutions bifurcating from stationary solutions for a lattice of size 
L = 20. (a) c = 0.5, (b) c = 1. The waveforms corresponding to the three points (i)-(iii) 
axe shown in Fig. 2. The dashed lines show the relation between 3' and w for the soliton 
solutions to the corresponding continuous NLS equations. 

The dashed lines show the paths for the soliton solutions to the corresponding continuous 
(paxameterless) NLS equations. These solutions are given by [17] 

A( z, t) = Qsech( ~22 )e'(Cz/2-'°') (18) 

where z = x - ct and Q2 = -2(w + 2 -b ca/4) > 0. The relation between 3' and w is found 
as  

3' = IA(z,t)l dz = + 2 + : / 4 ) .  (19) 

Since all solitary waves in the discrete NLS equation (1) appear to bifurcate from 
stationary solutions we will consider the occurrences of the bifurcation points. The non- 
linearity 3' will everywhere be assumed positive. For p = 1, 3' (as given in (16)) is positive 
only for the integer m nearest (L/2~r)Arcsin(c/2) when k < ~'/2. For c > 2 and k < ~'/2 
Eq. (16) yields a negative value of 3'. Hence, there are no ("bright") 1-solitary waves for 
c > 2, i.e. the maximum speed of the (bright) 1-solitary wave is 2/h [18]. This result also 
holds for the integrable, discrete NLS equation (5). 
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For ~r/2 < k < 3zr/2 we find a number of 1-solitary wave solutions to Eq. (1), but 
they are all "dark" solitary waves. An example is shown in Fig. 4. Corresponding dark 
soliton solutions to the integrable, discrete NLS equation have not been found. 

Consider the c = 1 solitary wave solution (Fig. 1) to the discrete NLS equation. The 
waveform for different values of 7 is shown in Fig. 2 while Fig. 3 shows the result of a 
numerical time integration of Eq. (1) where the initial condition is taken as the "middle" 
one of the computed waves in Fig. 2. This time integration shows that the collocation 
method gives a very accurate approximation to a solitary wave and that  the actual solitary 
wave is stable. 
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Figure 2: Waveforms of the solutions corresponding to the points (i)-(iii) in Fig. 1. 

To get an indication of the rate of convergence of the solitary wave solution as the 
number of collocation points and modes, n in the expansion (9) is increased consider Eq. 
(8). This equation is only satisfied if the numerical solution (9) is exact. If it is not exact 
then the 0 on the right hand side of Eq. (8) will be replaced by a function r(z) which is 
0 in the collocation points. Fig. 5 shows how the numerical solution converges when n is 
increased. Here the error of the numerical solution is defined as max(IRe[r(z)] h IIm[r(z)]l). 
The graph clearly suggests superalgebraic convergence [11]. 

Eq. (1) is not completely integrable. One implication of this is that the solitary wave 
paths stop at some point as 7 is increased so solitary waves only exist for sufficiently small 
values of 7. For the two examples in Fig. 1 numerical calculations show that the paths 
stop at 7 ~ 2.4 for c = 0.5 and at 7 ~-" 1.8 for c = 1.0. 

Finally, Fig. 6 shows an example a double-solitary wave solution to the discrete NLS 
equation (1). This solution has been found using the procedure described above, i.e. it 
bifurcates from a stationary solution. A numerical time integration of Eq. (1) shows that  
this solution is stable. 
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Figure 3: Numerical  integration of the discrete NLS equation with the wave (ii) as initial 
condition showing a perfect solitary wave propagat ing with speed c = 1. 
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Figure 4: "Dark" solitary wave. L = 20,c  = 1 ,m = 9,w = - 1 . 2 1 , - / =  4.9. 
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F i g u r e  5: T h e  er ror  of t h e  n u m e r i c a l  so lu t ion  as a f u n c t i o n  of t he  n u m b e r  of m o d e s  
sugges t ing  supe ra lgeb ra i c  convergence.  

0.08 

0.20 

0.16 

0.12 

0.04 

- I . . . . . . .  

8.00 16.00 24.00 32.00 40.00 

F i g u r e  6: D o u b l e  so l i t a ry  wave. L = 40 , c  = 1 , m  = 3 ,w  = - 2 . 4 2 , 3 '  = 2.9. 
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