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Abstract .We present a general approach for studying the nonlinear transmittance and gap 

solitons characteristics of asymmetric and one dimensional (1 D) systems in the low amplitude or 

Nonlinear Schr6dinger limit. Included in this approach are some novel results on naturally 

asymmetric systems and systems where the symmetry is broken by an external constant force. 

I. Introduction 

Transmissivity near the gaps of a nonlinear system 1 of finite length exhibits bistability 

and can approach unity once the amplitude of the incoming sinusoidal wave is greater than a 

certain threshold which is frequency dependent and decreases with the length of the system. In 

the transmitting state, one has a nonlinear standing wave called2, 3 a "gap soliton ". Recent 

literature 1-3 has focused on symmetric systems, i.e. where the nonlinear potentiel (substrate or 

Lateraction potentiel ) is symmetric: it only contains even powers of the characteristic field or of 

its gradient. 

An interesting way to complete and extend our knowledge of the nonlinear response of 

finite systems with gaps is to analyse systems which are naturally asymmetric or systems where 

the symmetry is broken by the presence of an external force 4. We present here a general 

approach for studying the nonlinear transmissivity and gap soliton characteristics of asymmetric 

1D systems in the N.L.S. limit. We illustrate this methodology by application to the perturbed 

Sine-Gordon system. 
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I I  . G e n e r a l  p r o b l e m  

In the one-dimensional arrangement illustrated in fig. 1, an incoming wave plane wave 1 

of frequency co, amplitude 90 and wave number ~ = co / cg in a linear medium propagates 

along the x direction and strikes at x = 0 a nonlinear medium of length L. The complex quantity 

R is the amplitude of the reflected wave measured with respect to 9o and similarly T is the 

amplitude of the Iransmitted wave at x = L in the linear medium (3) expressed as a fraction of that 

of the incident wave. 

¢~o exp ( i (kgx-o~ t)) 
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Td~o exp ( i (kgx-o~ t)) 
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(1) x = 0 (2) x = L (3) 

figure 1 : the incoming field 

9(x,t) = 90 exp( i(kg x - cot )) 
strikes a nonlinear film (2) 
of length L. The Iransmitted 
wave emerges in the linear 
medium (3). 

Inside the nonlinear medium we assume that the field On(t ) obeys a generalized Klein-Gordon 4 

(K G) lattice model equation : 

a2On Co2 dV(On) 
= a-~- (On+l + O n - l - 2 O n )  - c°°2 d o n  (2.1) 

Here n is the site number, V(On) is a nonlinear substrate potential ,the constants c o and co o are 

the characteristic velocity and frequency of the system and a is the lattice parameter. In the low 

amplitude limit, we look for nonlinear collective oscillations in the bottom of the potential wells. 

For this purpose, assuming • n = egn + O o in eq. (2.1), where E << 1 and • o is the ground 

state or potential minimum around which the oscillations will occur, and keeping terms to order 
e 2, one gets: 

a29n 
= K (gn+l  + 9n-1 - 29n) - (co'o) 2 (gn + eOtga2 + e2139n 3) (2.2) 
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where K = Co2 / a 2 and the coefficients to'0, o~ and 13 are determined by the shape of the 

potential. It is interesting to note here that ~ o  = 0 and the second order term vanishes ( o~ = 0) 

when the potential wells are symmetric, as it is the case for the classical Sine-Gordon system 
where dV(On)/dO n = sin • n. We have Oo # 0 when the potential wells are asymmetric, which 

is the case in SG system perturbed 4 by an external force ~ .  

Let us now consider oscillating solutions of the form: 

~n(t) = F 1 ei0 n + c.c + elF o + F 2 e2i0 n + c.c] (2.3) 

where F1, F 2 and F 3 are, respectively, the slowly varying amplitudes of the first harmonic, the 

dc and and second harmonic terms. These last two terms are introduced to take into account of 
the asymmetry of the potential, however we neglect higher harmonics. The phase defined as On 

= kna - tot varies rapidly. Inserting (2.3) in (2.2), equating dc, first and second harmonic terms 

and keeping terms to order e 2 , we can relate F0 and F2 to FI, and get : 

2ct 2 
o32=(0)'o) 2 +4K sin 2 ~ + e2(0)'o) 2 [-4(z2+ +3~] IF112 

3 + 1 6 K s i n 4  ka  
(to'o) 2 2 

(2.4) 

Expanding now this general nonlinear dispersion relation eq. (2.4) in Taylor's serie about the 
carrier frequency COp and wave vector kp yields5: 

~ =  (-~)(k-kp)+ 1 ~20) ~0) 
( 8 - ~ )  (k-kp)2+ (~1-~112) ]Fll2 (2.5) 

Setting f~ = 0)-0)p and K = k-kp ,with ~2 << COp and K<< kp, eq. (2.5) represents the 

nonlinear dispersion relation f~ = f(K, IF112) of the wave envelope. In (2.5), the derivatives 

represent respectively the group velocity Vg, the group velocity dispersion P and the 

nonlinearity: 

80) V 820) ( ~ )  = 2P, O = - ( ~ )  (2.6) 

Substituting now the derivative operators in eq. (2.5) by the coefficients defined in eq. (2.6) 

yields the Nonlinear Schrtdinger Equation (N.L.S.): 

i [Fl t  + Vg Flx] + P Flx x + QIF112 F 1 = 0 (2.7) 

We now consider a particular case, in order to illustrate how one can determine the transmittance 

and the envelope behaviour of a given system. 
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H I .  A n  e x a m p l e :  t h e  p e r t u r b e d  S i n e - G o r d o n  s y s t e m .  

We consider the specific case 4 of  a perturbed SG system. In this case, the Sine-Gordon 

potential is: 

S~ 
V (~n) = 1 - cos (:I) n + "--'W ¢l)n (3.1) 

Its minimum occurs at ~ o  = - sin'1 ( ~ / O o 2 )  , while the coefficients o feq .  (2.2) become 4 
1 

(a)'o) 2 = t°o2COS ~ o ,  (z = - ~ tan ~ o  and 13 = - . The force ~ lowers the linear dispersion 

curve with respect to the unperturbed case ( ~ = 0 ) ,  as shown on fig.2. This is enforced by the 

nonlinearity Q in N.L.S. eq. (2.7), which is positive in this case: 

1 tan2(O0) 
Q = o02cos(O0) [ tan2(O0). 2 + I ] , 

16K sin4k~_~ 
2{0p 3 + to02cos(~0 ) 

(3.2) 
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f ig .2  L i n e a r  and  non l inea r  
dispersion curves for a perturbed 
SG system. The external  force 
lowers the l inear curve (dashed 
l ine)  wi th  r e s p e c t  to the 
unperturbed case ( dotted line), 
while  the nonl inear i ty  with an 
arbitrary amplitude enforces this 
lowering (solid line). 

The interesting situations occur then near the gap edges of  the linear dispersion curves, 

because the nonlinearity will  change the transmission behaviour. We have: 

- either kp = 0, top = o.~0', Vg = 0 and P = + c02/2Op near the lower gap 

- or kp = ~ / a ,  Op = 0)c', Vg = 0 and P = - c02/2Op near the upper gap. 

In both cases,the angular frequency of the incoming wave is repered by the small detuning f2 = 

c0-  top. We seek now envelope functions in the nonlinear medium of the form6: 
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FI (x,0 = ¢0 ~ exp(iO(x)) exp(-if~t) (3.3) 

where the squared envelope function I(x) and the phase 0(x) are real. Putting the form (2.9) in 

N.L.S. eq. (2.7) gives after some calculations6: 

(~x)2 = (I) (3.4) 9~ 

with: 

p~ I 2 - 4 I B  + 4 A 2 ) .  (3.5) 
t2 

• (I) = -  (2  0~02 I3 + 4 ~ - 

The constants of integration A and B are determined by the boundary conditions at the interfaces 

(see fig.l), namely the field and its first spatial derivative are continuous at x=0 and x=L. 
Moreover, these boundary conditions show that I(x=L) = IL is always a root of  ~ (I), while 

limiting ourselves to low amplitude ~ and small detuning ~,  the two other roots of ~(1) are real 

and positive. Finally, 9~(I) becomes: 

~( I )  = - 2 p~ t~02 ( I -  IL ) ( I- I+) (I - I.) (3.6) 

where I+ and I_ are given by: 

4 IL Q~o 2 )+ ( T  

° 4  

f2 )2 2IL kg 2 P 
+ ~ - 2  + Q~2  (3.7.a) 

l )  )2 2IL kg 2 P 
+ ~ + Q~02 (3.7.b) 

Integrating eq. (2.10) according to the ordering between I(x), IL, I+ and I. and the sign of P, Q 
and ~ ,  leads to a Jacobi Elliptic 7 function expression with the parameter IL. Using once more 6 

the boundary conditions gives the following condition: 

[ ( ~  )x=O ]2 + 4 kg 2 ( I L + I(x=O) )2 _ 16 kg2 I(x=O) = 0 , (3.8) 

which permits to keep by numerical calculations the suitable values of IL. Once IL is determined, 

one can get I(x). Then, from eqs. (2.3), (3.3) and continuity at x = L, we get the transmissivity 

coefficient ITI 2 = IL. 
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IV. Resul ts  for the pe r tu rbed  S ine-Gordon  system. 

Using the approach presented in the previous sections, we calculate numerically the 

lransmissivity and the square of the envelope function. We consider successively the lower gap 

and the upper gap of the dispersion curve (see fig.2), where the results are quite different. 

A. Lower gap: we consider a system where L = 60 a, the velocities (defined in section ]I ) are 

co = cg = 4.5 and: ~ = (o - o.~0' = - 0.01. 

Our results, represented on fig.3.a, agree with the previous works 1,6 obtained for SG 

systems, i.e. the system presents bistabilities and hysteresis cycles. The external force lowers the 

threshold values, as seen on fig.3.a. This can be easily understood because Q, given by eq. 

(3.2) is a growing function of (I)0 and ~ .  

c i]~ D~ : ' t " . ~  i ;-1--4 I T I Z  " I ' , " ' 
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Fig.3.a Transmissivity ITI 2 versus the amplitude 4)0 of the 

incoming wave, when the frequency oi lies just below the 

lower gap edge (D.=-0.01) for the unperturbed S-G system 

(solid line) and for the perturbed S-G system with a force if: 

----0.39 (dashed line) or ff:=0.72 (dotted line). 

Fig.3.b,c and d: For ff:= 0.72, the shape of I(x) at points B, C 
and D of fig.3.a is represented versus the coordinate x. 
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When 4)0 is weak, i.e. in the linear limit, the wave envelope is evanescent (fig.3.b). 

When 4)0 increases, the system reaches a certain threshold, which depends on the value of ~ .  
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Then the system switches to a transmitting state and the envelope is that of a nonlinear standing 

wave ( called a gap soliton). In this case, one has P.Q > 0. Then if one further increases ~0, the 

transmissivity reaches successively several maxima, which correspond to different resonant 

modes (standing waves of fig.3.c and d) described by Jacobi Elliptic functions. For one resonant 

mode (fig.3.c), the maximum is at L/2 = 30. 

B. Upper gap: the nonlinear system length is still L = 60 a ,  but now co = 2 . ,  k~ = 0.015 

and f2 = co - O~c' = - 0.003. Our results, represented on fig.4.a, still show that the threshold 

decreases with the external force. This can be explained by the fact that Q increases with if:. The 

squared envelope function, represented on fig.4.b, is characteristic of  a standing wave 

behaviour: it now corresponds to P.Q < 0.By contrast to the previous case, for one resonant 

mode (standing wave on fig.4.c) at x -- L/2 = 30 one has now a minimum. When ~0 is further 

increased, the envelope finally becomes evanescent (fig.4.d); this can be explained by 

considering the dispersion curve (see fig. 2) and remarking that the nonlinearity tends to lower 

the curves. Then, ta lies inside the gap. 
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Fig.4.a Transmissivity ITI 2 versus the amplitude ¢0 of the 

incoming wave when the frequency ~0 lies just below the upper 

gap edge (f2 = -0.003) for the unperturbed S-G system (solid 

line) and for the perturbed S-G system with a force ~ =0.72 
(dotted line). 
Fig.4.b,c and d: For ~:= 0.72, the shape of I(x) at points B,C 
and D of fig.4.a is represented versus x. 
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The method presented here allows to investigate asymmetric systems. If the asymmetry 

results from a symmetry breaking, as for the perturbed S-G system, the external force allows to 

control the bistability or nonlinear switching. Note that our approach can also be used for a 

natural asymmetric system 4 like ,,~4 ,, 
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