
E V I D E N C E  O F  E N E R G Y  D I F F U S I O N  
IN P U R E  A N H A R M O N I C  D I S O R D E R E D  C H A I N S  

R. Bourbonnais 
HLRZ, KFA Jiifich 

Postfach 1913, D-5170 Jiifich 

R. Maynard 
CRTBT, CNRS 

B.P. 166X, 38042 Grenoble Cedex 

Abstract: We present results of large scale simulations on vibrations of an- 
harmonic disordered chain. We find that anharmonic effects tend to counter 
the locMisation process and lead to diffusion of the energy on the lattice. For 
the anharmonic ordered case the energy is concentrated in large peaks as the 
global energy spread linearly in time. 
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I n t r o d u c t i o n  

Using a massively parallel computer (Connection Machine), we have studied a chain 
of atoms of mass m/, interacting by harmonic and "quartic" anharmonic interactions 
described by the coefficients k2 and k4 in the hamiltonian which is written as: 

1 2 k2 k4 
H = 5m/V,  + ( V / -  2 + ¥ (U, - 4 (1)  

i i , j , (n .n . )  i , j , (n .n . )  

The Ui(t) are the scalar amplitudes of vibration at time t and V~(t) = ~ri(t); the last 
two sums run over all pairs of nearest-neighbors. Disordered systems were simulated 
by having the masses mi randomly distributed. In a perfect chain, rni = m and the 
hamiltonian (1) is the one studied in early time by Fermi, Ulam and Pasta [1]. The 
nature of the stable non-linear excitations of frequencies higher than the cut-off phonon 
frequency is an interesting problem which was revisited recently by Sievers arid Takeno 
[2]. They found, self-localized anharmonic modes of odd parity with frequency above 
the Debye cut-off frequency and dependent on the k2 and k4 coefficients. Recently, Page 
[3] has showed that the pure anharmonic hamiltonian i.e. without harmonic interaction 
(k2 = 0), can be solved and yields two anharmonic modes of odd and even parity with 
frequencies above the phonon cut-off frequency. 

The present study deMs with this simplified pure anharmonic hamiltonian (k~ = 0) 
in ordered and disordered chains. The main results are obtained by numerical simulation 
of large chains of 16000 atoms. The equation of motion are integrated numerically using 
either a simple leap-frog algorithm as described in reference [4] or a more sophisticated 
fourth order symplectic method [5]. Results were found to be independent on the 
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integration method. On a Connection Machine of 16384 processors with single precision 
hardware Weitek chips and a SUN front-end computer  we reached performances of 
21 • 106 updates/see with the leap-frog algorithm. The symplectic solver was about  3 
times slower. 

Periodic boundary conditions are used and the excitation consist in an initial dis- 
placement of unit length of some chosen site (labeled 0). The time steps is 1/50 of 
the shortest period of vibration and averages were taken over an ensemble of 10 to 200 
different samples. Whenever disordered systems were considered, the masses were dis- 
t r ibuted uniformly around the average mass m0 = 250 with a relative root-mean square 
deviation : 

< rn i > --rn 
= ( 2 )  

with cr = 11.5%. 
The characteristic results are represented in the following figures, where the exci- 

tations has been applied at x = 0. We present the instantaneous energy Et(x)  as a 
function of the space variable x for different times (in unit of the shortest period of 
vibration). 

1 - P e r f e c t  chain 

The function Et(x) is shown at a time (t = 50, fig. la)  where the initial peak of 
energy has already split into severM peaks. At time t = 1000 (fig. lb) ,  a broad packet 
of the peak fragments is observed. Note that well defined peaks are moving in front of 
the packet. It will be shown that  the r.m.s, of this energy distribution varies linearly 
in time (cf. figure 4). 

2 - D i s o r d e r e d  cha in  

The same plots Et(x) for now disordered chains reveals a progressive spreading out 
of the energy in space. Here the energy distribution at t = 1000 is decreasing in space, 
but  fluctuates largely for one given sample. 

3 - D i s o r d e r e d  cha in  : E n s e m b l e  ave rage .  

Averages of energy profiles from 200 samples are plotted at different times (fig. 
3a). As time increases the energy spreads on the lattice. In fig. 3b we plotted Et(x ) .  
v~  vs. x/v/ t .  As time increase the distribution function becomes increasingly well 
approximated by a gaussian function. For t=10000 data  we found that  we could express 
Zt(x)  (solid line in fig. 35) as :  

Et(x)  = 4.72.10 -2 exp(-2.18 -2 x 2 • 10  ( 3 )  
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Figure 1. Energy distribution function Et(x) in the ordered case for a) t = 50 and 
b) t = 1000. The horizontal axis is in lattice units, the vertical scale is arbi t rary  units. 
The  excited sites is site 0. The energy also spread in the negative direction (not shown). 
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Figure 2. Energy distribution function Et(x) in the disordered case for a) t = 50 
and b) t = 1000. The energy present large fluctuations with a general tendency to 
decrease. The eharacteristic length of decrease grows with t ime as does the number  of 
peaks. 
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Figure 3. Average energy distribution function < Et (x)  > (a) in the disordered 
case for t = 500(o), 1000(+),2000(D),5000(×) and 10000(A). Over 200 samples were 
averaged. In (b) we have plotted < E~(x) > .v/t vs. x/v/'i and eq. (3) (solid line). As 
time increase the curves converge toward a gaussian. 

4 - E v o l u t i o n  o f  t h e  e n e r g y  d i s t r i b u t i o n  

The second moment of the energy distribution < x 2 > is plotted as a function of 
time for three different situations : - the losanges for the perfect chain exhibiting a t2 
wr ia t ion  at large times, - the crosses for an ensemble of 10 disordered chain show a law 
proportional to time for about two decades, - the square for a pure harmonic disordered 
chain (k4 = 0) where the localization phenomenon is revealed by the saturation of 
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Figure 4. Second moment  of the energy distribution function < x 2 > for the 
harmonic disordered case (o), the anharmonic disordered case (+)  and the anharmonic 
ordered case (o). The first curve shows how the energy becomes localized due to the 
disorder in harmonic systems. With anharmonicity the second moment  increases linearly 
with time for (t > 1000) as in a diffusion process. In the anharmonic ordered case the 
moment  increases as t 2. 

< x 2 > at long time. The estimated localization length is obtained from this asymptotic 
value: x0 ~ 100. 

5- A na ly s i s  

A preliminary analysis of the observed phenomenon can be formulated in the fol- 
lowing terms: 

- the energy peaks of the perfect and pure anharmonic chain are basically instable. 
One observes a spontaneous desintegration a big peaks in fragments of smaller energy. 
At longer times the packet of fragments moves uniformly in time. This uniform motion 
reveMs an underlying conservation law during the fragmentation of the type "conserva- 
tion of momentum".  This relation comes from the translational invariance proper ty  of 
the perfect chain. 

- The apparent  "normM diffusion" would come from the fragmentat ion of the peak 
excitation on the mass impurity. Let us call Ri, Ti and Li the fraction of the inci- 
dent energy which is reflected, t ransmitted of localized on the mass mi. The energy 
conservation law gives : Ri + Ti + Li = 1. 

The problem of random fragmentation can be changed into the more conventional 
problem of random wMk of a fictive particle which is reflected, t ransmit ted or immo- 
bilized with probability Ri, Ti and Li. It is not difficult to show [6] that  the particle 
obeys a diffusive law characterized by a diffusion constant D oc (Ri/Ti) -1. Hence, this 
diffusive motion leads to a well known law < z 2 >,-. 2Dt. Since this law is well observed 
in the simulations, the model of random fragmentation on the impurities is validated. 
This conceptual frame, in addition to the expected characteristic lengths present in 
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the problem like the interatomic distance and the soliton or peak width, provides us a 
new length I : the average distance between two random fragmentations. The previ- 
ous regime of normal diffusion is hence obtained when l >>  A -,~ a. (A is the soliton 
width). Other interesting regimes could be also considered, particularly when the har- 
monicity is restored, where an additional characteristic length : the localization length 
must be taken into account. This more complex regime exhibits anomalous diffusion [4]. 
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