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Abs t rac t :  In near-integrable soliton-bearing systems spatially coherent states can play an important 
role. In this contribution we briefly review some of the main phenomena for physically relevant situa- 
tions. We start with the well-known soliton formation in integrable systems which can be interpreted 
as the first appearence of self-organization in physics. It is shown here that also in non-integrable 
Hamiltonian systems solitary waves can self-organize. For dissipative systems, the self organiza- 
tion hypothesis is presented and tested for 2d drift-waves. A socalled self-organization instability 
is found which shows the growth of a spatially coherent (solitary) structure even in the presence of 
turbulence. The other finding in this respect, the absence of (Anderson) localization in nonlinear 
disordered systems, is also briefly mentioned. The soliton, as a collective excitation, can overcome 
individual chaotic motion. A recent result for the proton motion in two Morse-potentials under the 
influence of oscillations of the heavy ions, is discussed showing the importance of solitons to create 
ordered structures and collective transport. Nevertheless, solitary waves can also be the constituents 
of deterministic (temporal) chaos as shown in the final part of this contribution. 

1. Self-Organizat ion of spatial ly coherent  s t ruc tures  

The constructive proof [1] of integrability of the ld KdV-equation can be considered as a milestone 
in the development of nonlinear physics. As a by-product of the proof, self-organization in the form of 
stable solitons appears. This is very fascinating and can be considered as an important contribution 
to the new discipline "synergetics'. From the physical point of view the question arises whether this 
self-organization phenomenon is an artefact of the integrable systems. Integrability can be broken 
by several means, e.g. higher space dimensions, dissipation, driving, etc. In the following we shall 
present four examples for self-organization of solitary waves in non-integrable systems. The results 
follow from numerical simulations, but can be understood by analytical theory. 

Let us start with self-organization in KdV-systems. We take as an example the non-integrable 2d 
KdV equation 

Otu + uOzu + OzV2u = 0 (1) 

in the Zakharov-Kuznetsov form. Here, V 2 = 0*2 + 0, 2 . It reduces for only one relevant space 
coordinate z to the celebrated KdV-equation [1]. As has been shown [2], ld soliton solutions us = 
12712 sech2[r/(z - z0 - 4~/2t)] of (1) are transversely unstable. The growth rate % can be calculated 
by variational principles to yield 

7~ = su~(~Pl(gzHkOzlcP) = inf (~lOzHkOzHkOzHkOz[~°) (2) 
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Here Ilk = --(:92, + 4rl 2 -- us + k 2. The growth rate depends on the transverse wavenumber k; a 
cut-off appears at k = k, - v~r/, and the growth rate has its maximum for k 2 ~ 1.Tr/2. In Fig. la  
this dependence is shown by constructing numerically upper and lower bounds from (1). The exact 
growth rate curve lies within the shaded area. Also the small-k and small-(k,-k) expansions are 
shown, respectively. In a 2d numerical simulation [3] we identified this instability and followed its 
time evolution. A typical result is shown in Fig. lb. We can interpret this finding in the following 

\ V..2~X. 
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Fig. 1 (a) Transverse instability growth rate ~/k vs. wavenumber k for a ld  K dV  soliton. 
d b) Appearence o/stable 2d KdV-solitons in a numerical simulation of (1). We started with a one- 

imensional soliton in the z-direction. 

way. In a narrow channel of width d, small k-values cannot occur and the (along the channel) ld  
KdV soliton is (transversely) stable. At d = 2r/k~ a bifurcation occurs and the 2d KdV solitary 
wave is the new self-organized state. It is shown in Fig. lb  as one of the humps. 

For the 2d soliton solution of (1) a Liapunov functional can be presented [4] in the form L = 
Lp{u} - Lp{tiM}, where 

Lp{u} := / d2r[ (W)  2 - + 4,2 2], (3) 

and tiMeS belongs to the invariant set S defined with respect to space translations (, tiM ~- Us (g - -  ~'~. 
The functional (3) proves the stability of the 2d stationary localized solitary wave solution of (1). 
The procedure is standard: for the first variation ~L = 0 and for the second variation 62L > 0 can be 
shown. [When instead of two space dimensions the three-dimensional case is considered, the stability 
of a 3d localized solitary wave solution can be proven in a similar manner!] 

However, one should be cautious in generalizing these results. If, for example, the case of the 
cubic nonlinear SchrSdinger (NLS) equation 

iOtq + 21q12q + V2q = 0 (4) 

is investigated, again the one-dimensional case shows self-organization into ld  solitons q8 = 
~/sech(yx) exp(i~2t). This fact follows from the inverse scattering solutions by Zakharov and Sha- 
bat [5]. The soliton solutions are two-dimensionally unstable, with a transverse instability growth 
rate 

- su - (v [H- ]v}  " " - ( v l H - H + H - ] v )  
- (vlH---:Iv  " (5) 

In the second expression, the variation of ~ is restricted to the subspace (~IH-[~) < o. Here, the 
operators H+ and H_ are defined as H+ = -0~  - k 2 - 21as[ 2 + r/2 and H_ = H+ - 4[q8[ 2, respectively. 
The cut-off wavenumber is k~ = v/3r/. When again considering d = 27r/k as the bifurcation parameter, 
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at d = 2~r/kc a bifurcation occurs but instead of a stationary (unstable) 2d SchrSdinger soliton a 
new time-depending (collapsing) solution appears. When the initial state is close to a (unstable) 
stationary 2d SchrSdinger solitary wave, the following theorem can be proven [7]: 
Let us assume in 2d that H{q} _< 0 holds, where H is the energy functional H = f d2r([Vq[ 2 _~]1 q[).4 
Then, up to translation in space and phase shifts, we can find for every e a/it such that 

I1 q(x,t = O )  - G(x) llw~,=~ ~ ~ II q(x,t) - #(t)G[#(t)x] 112 ~ ~ holds, 

with /~( t ) -  vlt~tk # ( t = 0 ) = l a n d 0 < t < t c .  IlVall2 ' 

Here G is the 2d solitary wave solution. It is very interesting to see that, although the stationary 
solitary wave solution is not stable, the new bifurcating state is connected to the 2d solitary wave 
solution: it is a solitary wave solution with time-varying parameters, i.e. the width is decreasing with 
time, leading to a singularity within a finite time. Because of space limitations, we cannot present 
more details and numerical results here. They will be published elsewhere [7]. We should note that 
the area of collapsing solutions is a very active one and for arbitrary initial conditions the question 
of the collapse as an effective dissipation mechanism in plasmas is still open. 

Next, we turn to an essentially non-integrable problem (with dissipative and driving terms) to 
discuss self-organization in nonlinear drift-waves. When dissipative and driving terms are ignored, 
the basic equation is the Hasegawa-Mima-equation [8] for the normalized electrostatic potential ¢: 

0~(1 - V~)¢ - a.O~¢ = ~ x r e .  V V ~ ¢ .  (6) 

Here i¢~ is a normalized density-gradient-coefficient. Equation (5) is non-integrable, but has 2d 
dipolar vortex solutions. The latter (in general) do not interact elastically, but show a surprising 
stability against small perturbations. We now generalize (6) by including self-consistently driving 
and damping terms due to collisions in the same way as done by Kono and Miyashita [9]. In plasma 
physics the corresponding linear instability is known as the collisional drift instability. Instead of (6) 
then 

2 

0~(1 - v ~ ~" ~ s~ + # v 4 ] ¢  = ~ x r e .  v v ~ ¢  (7) 

appears. In (7), D = ~ /v~  characterizes the collisional contributions and kll is an effective parallel 
wavelength. A numerical simulation [9,10] of (7) shows the self-organization of an arbitrary initial 
state into a dipolar vortex. The maximum vortex with respect to the (numerically prescribed) box 
size appears. This end-result is shown in Fig. 2a. For this simulation we started at time t = 0 with 
random noise of low level. The unstable (linear) modes grow, transfer energy via mode-coupling to 
other modes, and a parametric instability amplifies small-k contributions. This numerical behavior 
can be understood analytically. A key-role in the interpretation of the final result plays the socalled 
self-organization hypothesis [11]. It is formulated for nonlinear partial differential equations with 
dissipation which contain two (or more than two) quadratic (or higher order) conserved quantities in 
the absence of dissipation. In the case of (6) we shall apply the self-organization hypothesis for the 
conserved quantities energy E[¢] = f d2r[(1 - V2)¢] 2 and enstrophy g[¢] = f d2r[(1 - V2)V2¢] 2. The 
hypothesis is formulated under the following two conditions: (i) There exists a selective dissipation 
process among the conserved quantities E and K when the dissipation is introduced. That is, one 
conserved quantity K decays faster than the other E. (ii) The nature of the mode-coupling through 
the nonlinear terms in the equation is such that the modal cascade in the quantity E is towards 
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small wavenumbers. Then it is assumed (and justified by numerics as, e.g., shown in Fig. 2a) that 
the following hypothesis holds: The randomly excited field O is expected to reach a quasi-stationary 
state in which O is described by a deterministic field equation. The latter is obtained by minimizing 
K within the constraint that E is kept constant: 6K - )~6E = 0. It is straightforward to show that 
this variational principle leads to the (quasi-stationary) equation for dipole solutions of (6) [in the 
absence of dissipation]. 

We have developed a method and derived concrete equations to explain the self-organization 

/ 

Fig. 2 (a) Self-organization of a big dipolar vortex as a result of numerical simulation of (7). 
(b) A chain of 2d KdV-type solitary waves appear when (12) is solved. 

hypothesis from first principles [12]. Abbreviating the linear operator appearing on the left-hand- 
side of (7) by L we rewrite (7) in the form 

L¢ + {¢, v~¢} = 0.  (s) 

Here, {..., ...} denotes the Poisson-bracket. Next we separate the normalized potential ¢ into a regular 
(O n) and a turbulent (O T) component in the usual way by making use of a turbulent ensemble and the 
corresponding averaging denoted by (...). Thus when introducing O = O n + O T we assume (O T) = 0. 
Within this concept we obtain from (8) the coupled equations 

L0 R + {OR, v~o~}  = _({¢T, v~OT}), (9) 

L,~ ~ + {¢ ~" , v~¢ T ) - ({O T, v~0r}) = -{O R , v : ¢  T } - {0 T , v :OR) .  (lO) 

In the absence of turbulence (¢ T --- 0), the left-hand-side of (9) determines in the usual way the 
regular structures. On the other hand, in the absence of regular structures, i.e. when the right-hand- 
side of (10) is zero, the last equation will be similar to that known from (weak) turbulence theory 
[13]. Linearizing (9) and (10) leads after some tedious algebra [12] to the growth rate 

kk2v 
]o °° k~W,,dkl > 0 (11) ~k : 1r l-- ~ 

where Wk = }(1 + k2)(]OT[2)~ is the zeroth order turbulent spectral energy density, which has been 
assumed, in lowest order and for demostration, to be isotropic. 
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Besides this analytical attempt to justify the self-organization hypothesis we performed a numerical 
simulation for a slightly different model equation compared to (6). In the presence of a temperature 
gradient also a KdV-type nonlinearity appears in the basic equation [10] 

2 

o,(1 - ,~.)o~ + D k l - ~  ~ 0v) ¢ + [ - (u  + ~;' a2 +/~V4]¢ + uOuV2¢ + gw¢0~¢ = ~ x V¢ .  VV2¢.  (12) 

Here gw is the temperature-gradient-coefficient, and we have transformed (with velocity u) into a 
co-moving frame. The interesting difference with respect to (6) is that (in the dissipationfree case) 
the relevant conserved quantities change from Z[¢] and g[¢]  to /~[¢] = f d2r[(V¢) ~ - ~,~3| and 

3U7" J 

/'f[¢] = fd2r¢  2, respectively. Now, the self-organization hypothesis yields the variational principle 
6 E -  A6/'( = 0 whose solutions are 2d monopole structures of the KdV-type [see Fig. lb]. And indeed 
a numerical simulation of (12) confirms this conjecture. In contrast to the single big dipolar vortex 
for (7) a chain of 2d solitary waves (zonal flow) appears for the model (12) as shown in Fig. 25. The 
stability of the 2d solitary waves, even in the presence of the twisting nonlinearity, can be proven, 
whereas the dipolar vortex is structurally unstable with respect to perturbations in form of a scalar 
nonlinearity. 

2. Self-organized sol i tary waves as const i tuents  of  nonl inear  dynamics  

We now turn to the question whether solitary waves are "robust". There are three aspects con- 
nected with the definition of robustness. The first one is related to linear and nonlinear stability of 
the exact solutions within the corresponding models. Also the elasticity or inelasticity of collisions 
fails into this first category. The second one consists of the question whether solitary collective 
excitations can overcome individual chaotic motion, disturbances due to external fluctuations, etc. 
The third one is mainly considered here and goes one step further. Can solitary waves (as a whole) 
behave chaotically in time so that we can consider them as constituents of deterministic chaos? 
Let us start with a few remarks with respect to the second aspect. (The first one was already touched 
in the previous section 1.) A simple example might be helpful. In hydrogen-bonded chains solitary 
waves are found as the solutions of, e.g., the two-component model [14] 

anu, 
- w~ Og(~u'P") (13) dt 2 = u,~+x - 2un + un-1 

d2 p. 
dr2 - p .+ l  - 2p .  + p . _ ,  - a~. (p.  - . ' , . ) .  (14) 

Here, U is in general a double-well potential for the hydrogen-bonded proton; it is created by heavy 
ions. The potential U is assumed to be a function of two variables: the displacement u,  of the n-th 
proton from the middle of the hydrogen bridge and the relative displacement p,  of the neighbouring 
heavy ions creating this potential. Solitary wave solutions consist of kinks (or anti-kinks) for the 
proton displacement and are accompanied by disturbances in the heavy ion sublattice. From the 
individual (proton) point of view, the motion of the particle in an unharmonic potential is driven 
by the external motion of the heavy ions. Thus, when collective solitary wave excitations are not 
present, the position of the proton can be random. We [15] have verified this statement by a model 
calculation for the motion of a proton in the superposition of two Morse-potentials created by the 
two neighbouring heavy ions (see Fig. 3). The equation 

d~u 0 du 
dr2 + w 0 ( u ' P )  = ~ (15) 

was solved, where "y is a damping decrement and 0 has the form shown in Fig. 3. The superposition 
of two Morse-potentiais depends on the (normalized) coordinate p. For the latter we have assumed 
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an harmonic time-dependence p = po sin(fit) to simulate the dynamical behavior of the heavy sub- 
lattice in the absence of collective solitary wave excitations. As as result, similar to the finding 
for the Duffing oscillator, chaos can appear. This shows that solitary wave solutions are extremely 
important (e.g. for transport) since they can override the otherwise chaotic behavior. In this sense 
they can be called robust. 

Another important feature in this respect is the fact that solitary waves can even render an effective 
transport through random media. As is well-known [16], in linear systems disorder causes Anderson 
localization, i.e. an exponential decay of the transmission coefficient with the system length. But it 
has been shown that nonlinearity can lead via soliton formation to an effective transmission mecha- 
nism. We have investigated this phenomenon for a similar model as that one originally treated by 
Caputo et al. [17]. Especially in biological systems, where the environment always causes irregulari- 
ties in the chain, the formation of solitary waves, their propagation characteristics, and stability are 
now under active investigation [18]. 

Here we would like to discuss in more detail the other type of robustness which qualifies solitary 

heav~ 

UO'.p) / 
/ 

\ I / I N*Pr°~n 

tki/ I 

ion heavy ion 
l+p 

~Y -0.~ t 5 bu 

Fig. 3 (a) Motion of a proton in the superposition of two Morse-potentials created by two heavy ions. 
(b} Changes of  the potential with p as a parameter. 

waves as constituents for nonlinear dynamics, with possible temporal chaos. Let us demonstrate 
this on the paradigm of a perturbed NLS equation. As has been first demostrated by Nozaki and 
Bekki [19], for a model of damped nonlinear Langmuir waves driven in a r f  capacitor field, 

iOtq + O~q + 2lql2 q = - i T q  - iae i'~t , (16) 

the period-d0ubling route to temporal chaos occurs for phase-locked solitary waves. Analyzing (16), 
we can derive the existence condition for a phase-locked solitary wave as 27~1/2/ra << 1. The stability 
of this phase-locked solitary wave was investigated analytically [20]; at finite driving amplitudes (and 
for fixed damping rate 7 and prescribed frequency w) an instability in form of a Hopf bifurcation 
takes place and a regulary pulsating solitary wave appears. In a reduced phase-space, the phase- 
locked solitary wave corresponds to a limit-cycle. With increasing values of driving amplitudes, 
the system undergoes a series of torus-doubling bifurcations for which the universal Feigenbanm 
constants 6oo = 4.6692... and a¢o = 2.50291... could be recovered quite accurately. The situation 
changes when two space dimensions are taken into account. Then the collapsing solutions can be 
new attractors as has been discussed in Sec. 1. On the other hand, the whole scenario depends on 
the form of the "perturbations". If, e.g., we change from (16) to 

iOtq + 02xq + lql~q = - i a q  - ~q - 7q* (17) 

o r  

iOtq "4- O~q 4- plql2 q = 1 - xq (18) 
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for nonlinear modulated cross-waves in Faraday resonance [21] or radiation in laser irradiated in- 
homogeneous plasmas [22], respectively, we can find different nonlinear dynamical behaviors with 
spatial coherence. The first one shows bifurcations into cnoidal-wave-like functions whereas for the 
second one the quasi-periodic route to temporal chaos occurs. Both models have, in certain param- 
eter regimes, stable solutions [21-23] with spatial coherence; see. Fig. 4. Here, we would like to 

Fig. ~ (a) Appearence of a cnoidal-wave-type stable attractor for fl = -1 ,  a = 1, and ~/ = 1.6 in 
(17). (b) Space-time-plot of a solution of (18) for p = 1. A similar regular emission and (accelerated) 
propagation occurs for 0.7 _< p _< 1.2. 

emphasize a new point in the region of a stable solitary solution to (17). When the driving ampli- 
tude is time-modulated [24], i.e. ~ = % cos ~t, similar to (16) a phase-locked solitary wave appears 
which can take part in toto in the nonlinear dynamics as a spatially coherent structure. At the first 
glance, this looks similar to the phenomena detected in (16) and indeed all the tools used there can 
also be applied here. However, because of the possible bifurcation in space, an interesting interplay 
between nonlinear dynamics with spatial coherence and simultaneous bifurcation in space can take 
place. Details will be published elsewhere [25]. 

3. S u m m a r y  and conclusions 

In this contribution we have given an overview over the possibilities of self-organization and sub- 
sequent nonlinear dynamics with spatially coherent structures. The presentation is based on several 
new and original results which will be published in more details in subsequent publications. The main 
conclusions are the following: (i) In non-integrable systems stable solitary wave structures are formed 
by self-organization. (ii) The solitary (and spatially coherent) structures are robust in the sense that 
they can override individual chaotic behavior and contribute to transport even in disordered systems. 
(iii) Interesting and generic nonlinear dynamics takes place, with the spatially coherent structures 
as constituents. 

Acknowledgment :  This research is supported by the Deutsche Forschungsgemeinschaft through 
SFB 237. 
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