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I n t r o d u c t i o n  

A quite relevant theme in biological physics is the coherent energy transduction 
at the macromolecular level. One of the main theoretical problems in this field is 
the construction of a realistic model for nondissipative intramolecular energy transfer, 
through a nonlinear coupling among different degrees of freedom (DOFs). 

In the recent past a soliton model, originaUy proposed by Davydov, has been exten- 
sively studied [1] in the general context of energy transport in proteins. We contributed 
[2,3,4] to the subject with a molecular dynamics study of acetanilide (ACN), a model 
for a-helical regions in proteins. In our work on ACN chains we have investigated the 
dynamics of the DOFs involved in the soliton generation and propagation. If a soliton 
travels along such a chain, one may have an ordered dynamics in a limited region of 
space, and for a limited time; the ordered region would move along the chain with the 
soliton. Because of the need to recognize those vibrations that can sustain ordered 
motions over adequate time scales, in a background of chaotic uncorrelated motions, we 
have elaborated new diagnostic tools to analyse the dynamical coherence of each DOF 
in a complex molecular system. 

In a highly chaotic regime one does not expect to observe qualitatively different 
behaviours among the different DOFs: equipartition of energy holds and memory of the 
initial conditions is rapidly lost. However, in the transition from a fully chaotic regime 
to a regime dominated by ordered motions, one expects to find a mixed situation where 
part of the system may have a degree of chaoticity which is different from the rest of 
the system, and which could also vary in time. The usual indicators of order and chaos 
(e.g. Lyapunov spectra [5], fractal dimensions [6], spectral entropies [71), which give 
a global information on the system and are based on asymptotic time scale estimates, 
would not be useful, e.g., in identifying in the complex structure of a molecular chain the 
DOFs involved in a soliton. In this work we propose new indicators: partial Lyapunov 
exponents, computed from the dynamics of the tangent space vector associated with a 
given dynamical system. The finite time analysis of the growth rate of the components 
of this vector will give the required knowledge on the chaoticity of the single DOFs. 
In order to test our diagnostics we study here a simple dynamical system exhibiting a 
large range of characteristic frequencies. 
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T h e  m o d e l  

Our model consists of a system of five nonhnearly coupled linear oscillators. The 
hamiltonian of the model is given by: 

1~--~( +w2 2' l l'S 
qi qj" (1) 

' =1  ig j  

In one case, which we call the single gap system (SG), the values of the frequencies 
are the following: ~'1 = 1, w2 = 2 '  w3 = 2, w4 = 10e, and ¢vs = 30; in another  case, 
which we call the double gap system (DG), we put  ws = 90. The choice of the last 
two frequencies, an order of magnitude higher than the first three, is aimed at showing 
the influence of a broad range of frequencies with a gap on the dynamics of the various 
DOFs. 

We have numerically integrated both the equations of motion and the variation 
equations of motion with the central difference algorithm. In our case the second order 
equations of motion are: 

1,5 

ql ~ ~ 2 = -wiqi  - 2 qj ql i = 1,. . . ,5 .  (2) 
j(~i) 

The equations of motion in the tangent space (variation equations) are related to the 
stability of the orbits; they are usually written as first order equations, obtainable from 
the hamiltonian equations of the system. If $i = F~({zj }) are the hamiltonian equations 
of motion, where zl is one of the qi or one of the pl, then the equations of motion of the 
tangent space vector ~ corresponding to the variation of E are given by: 

: Z (3) 
k 

where the factor of yk is computed along the t rajectory ~7(t). Here we write (3) as 
second order equations: 

1,5 1,5 

~ i = - ( w ~  + 2  ~ q~( t ) )~ i -4  ~ q,(t)qj(t)~j, yi=_~i, 
j(#i) j(#i) 

i = 1 , . . . , 5 ,  (4) 

where (~I,. . . ,~5,T/1,-. . ,T/~) = ~, with ~i and ~/i corresponding to the variations of qi 
and Pl respectively. 

From eqs. (4) one can compute the Lyapunov spectrum in the usual way [5]; in 
particular, the maximum Lyapunov exponent is given by: 

AM = lira A(t), $(t) = 15o  Iff(t)l 
, - ,+,,o t- g ~(0-)I (5) 
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where if(0) is the initial vector in the tangent space, taken randomly. We have defined 
new partial Lyapunov exponents (PLEs),  referring to single DOFs: 

Ai = hm Ai(t), Ai(t) = 1 T ~ ( t ) + ~ ( t )  + i = 1 , . . . ,  5. (6) 

We want to remark the following point. It is a necessary condition that  at least 
one of the Ai is equal to AM, the maximum Lyapunov exponent defined in (5); but,  a 
priori, some of them could be smaller. However, a generic initial vector in the tangent 
space will expand in modulus like e ~Mt when t --+ c¢ with probability one. Therefore, 
also Ai, for each i, should be equal to AM with probability one. However, this is 
true only in the asymptotic limit; it is not to be expected that  the Ai(t)s, at finite 
times, should be equal. As a mat ter  of fact, their differences are a central point of our 
investigation. It turns out that ,  in the transition region between ordered and chaotic 
motions, there are still significant differences in the values of the Ai(t)s for times three 
or four orders of magnitude higher than the characteristic periods of the oscillators. 
This is the manifestation of a qualitative diversity in the behaviour of the single DOFs. 
We have studied the differences among the Ai(/)s by computing the quantities 61(t) = 
(A(g)  -- A i ( t ) ) / A M ,  and we have defined a characteristic "coherence time" for each DOF 
through: 

= t ,(t)at. (7) 

M a x i m u m  L y a p u n o v  e x p o n e n t s  

We have studied the two versions of our model at different values of e, the energy 
per DOF, or energy density. We have computed the maximum Lyapunov exponent 
(AM) to find out whether a transition in the dynamics takes place and the energy range 
in which this happens. In Fig. 1 we show AM at different energy densities for the SG 
version of our model. It is evident from the sharp change in the slope of Log(AM ) that  
such a transition takes place indeed [8], and is located between e = 0.9 and ~ = 1. Below 
this threshold the slope is strongly positive: AM changes by four orders of magnitude, 
passing from e = 0.7 to e = 1. Above the threshold the slope becomes small. The value 
of AM for the DG version at ~ = 0.7 is 1.04 × 10 -3,  much larger than the corresponding 
value in the SG version (0.79 × 10-4). This point will be discussed in the last section. 

In the frame of the KAM theorem [9] it is interesting to contrast the values of AM 
with the anharmonicity of the system. We have computed the ratio R of the anharmonic 
to the total harmonic energy, and we report  in Table I its values at the different energies 
that  we have simulated. It is interesting to note that  at e = 0.6, where the system SG 
gives AM = 0, the anharmonicity R is still as high as 4.7% . This shows that  for this 
system - with a significant gap in the frequency spectrum - the ratio of the per turbed 
part  of the hamiltonian to the harmonic part may reach quite relevant values before the 
KAM tori begin being destroyed. 
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TABLE I 

e 0.6 0.7 0.8 0.9 1.0 1.5 2.0 

R(%) 4.7 5.1 5.5 4.5 5.8 6.4 7.4 

10-2 

XM 
10-3 

10-4 

/ 

1 

i0-i 
-X 

i t t i i ] I i i i i I 

0.5 1.5 2 
£ 

Fig. 1. Maximum Lyapunov exponent vs. energy density (SG case). 

Corre la t ion  funct ions  

The statistical properties of the dynamics of the single DOFs may be characterized 
by the autocorrelation functions (ACFs). We have collected in Fig. 2 these functions 
for the harmonic energies of the different DOFs for the SG case, at total energy density 
e =  0.9. 

Some of the graphs are symmetric with respect to the zero line. This happens 
because in Fig. 2 only maxima and minima over groups of 100 computed points are 
plotted, in order to have clear graphs over large times. In the case of an ACF rapidly 
oscillating around zero this appears as a symmetrical graph. This way of plotting is 
sufficient if one is interested in studying the decay of the ACFs. From this point of 
view, they exhibit quite different patterns: there is a clear distinction between the high- 
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and low-frequency DOFs at that  energy; while the high-frequency ACFs show a short 
decay time, the low-frequency ones exhibit a large decay time. 
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Fig. 2. Autocorrelation functions of the harmonic energy for the five degrees of freedom 
(SG case), at e = 0.9. 

P a r t i a l  L y a p u n o v  E x p o n e n t s  

We have computed the PLEs for the five degrees of freedom of our system at energies 
near to the transition point individuated by AM. In Fig. 3 we show a graph with five 
curves corresponding to the DOFs for the SG case, at ~ = 0.9. It is clear that ,  because of 
the gap, the curves behave in very different ways; a group, corresponding to the DOFs 
with small eigenfrequencies, osciUates around zero; a second group, corresponding to the 
large frequencies, decays to zero only over large times. It should be noted here that  the 
dynamical behaviour of the individual DOFs, as derived from the PLEs, is not related 
in a systematic way to the complementary information that  can be deduced from the 
ACFs. Thus, while the PLEs of the high-frequency DOFs show a slower divergence of 
those DOFs for nearby trajectories (i.e., a localized ordered behaviour) than for the low- 
frequency DOFs, the corresponding ACFs at the same energy give a different indication, 
i.e., that  the autocorrelation time is shorter for the high frequencies. 

Using (7), one finds "r4 = 182 and r~ = 192. The values computed for the low- 
frequency DOFs are not significant because the variance of the integrand in (7) is so 
large (in particular, larger than ri) that  Ti itself loses its meaning, as it could be expected 
looking at Fig. 3. The variance of the integrand in (7) for i = 4, 5 is small, which 
shows that  the corresponding functions 6i(t) are close to hyperbola with the x-axis as 
asymptote.  

A point has to be remarked. One could try to assign a characteristic decay time 
to the ACFs shown in the previous section. It is evident, inspecting Fig. 2, that  the 
shape of the ACFs in most cases does not allow to define a characteristic time of a 



315 

decay process. Indeed, either the ACFs are correlated over times which are even greater 
than the whole simulation tlme (DOFs 1, 2 and 3), or the structure is quite irregular 
(DOFs 4 and 5). At best, in the last case, one could roughly identify in the ACFs a 
superposition of two decaying processes with completely different characteristic times 
[10]. 
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Fig. 3. Functions 51 vs. time at e = 0.9 (SG case). 

We have computed the LPEs also for the DG version at e -- 0.7. The LPEs are 
shown in Fig. 4, using the same method as in Fig. 3. One can see that  in this version, 
where the high frequencies are separated, the corresponding 5i(t)s are also separated, 
giving rise to quite different zls: "r4 -- 5400, r5 = 7800. Each ~'i of the high-frequency 
DOFs turns out to be approximately inversely proportional to AM, when e is changed; 
the proportionality constant is approximately the same in both versions of the model 
for i = 4. More generally, looking at all the results, this constant seems to depend only 
on the frequency of each DOF. 

Di scuss ion  a n d  C o m m e n t s  

As noted before, the DG version has a )~M which is much larger, at e = 0.7, than 
the AM of the SG version. That  is, the system with the larger frequency gap is more 
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chaotic. This shows how a prediction of the qualitative features of the dynamics of a 
system based simply on an inspection of the frequencies (or frequency differences) of 
the DOFs may be misleading. On the other hand~ the characteristic coherence times 
rl here introduced are able to single out the behaviour of each DOF also in a complex 
situation, in which a clear definition of a correlation time through the ACFs may not 
be possible (as shown in Fig. 2). 
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Fig. 4. Functions/~i vs. time at e = 0.7 (DG case). 

The shape of the curves given in Fig. 4 allows also to gain insight into the inter- 
mittent character of the dynamics of a single DOF. The peaks which accompany the 
time decrease of the curves indicate that  the corresponding DOF have just had tran- 
sient phases of more coherent dynamics, i .e ,  of lower values of the corresponding Ai(t). 
If one computed the A~(t)s over time intervals comparable with the average width of 
the peaks, one whould find a step-wise pat tern,  with short intervals of very coherent 
dynamics for the single DOFs. The coincidence of these peaks in different curves gives 
a clear indication of a cross-correlation of the coherent character in the dynamics of the 
DOFs. 

In conclusion, we would like to stress an important  feature of the new diagnostics 
we have introduced. When simulating a real system, one has always to use simplified 
models; it is therefore necessary to ask oneself if the results derived from the computer 
experiments are reliable. In this context the question of structural  stability of the 
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equations of the model is of utmost importance. As this question is usually very difficult 
to answer for complex systems, one can think of using the PLEs to check whether the 
DOFs which are more relevant in the description of the phenomena of interest in the 
simulation have long coherence times. If this were the case, one could argue that these 
DOFs would also be structurally stable for small changes introduced in the equations of 
motion, in the same way in which they keep coherence for small perturbations of their 
trajectory. 

More fundamentally, the computation of the coherence times of the DOFs in a 
realistic system, say in a biological macromolecule, could be a clue to understand how 
certain specific DOFs are able to perform ordered dynamical sequences over time in- 
tervals which are orders of magnitude larger than their characteristic period, while the 
others simply vibrate in a disordered, thermal way. 
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