THE INFLUENCE OF EXCITATION CONDITIONS
ON THE DEAD VOLTAGE OF PHOSPHORS

By
GY. GERGELY

RESEARCH INSTITUTE FOR TELECOMMUNICATION, BUDAPEST

(Received 6. VI. 1960)

In some previous papers [1—3] the cathodoluminescence efficiency and the voltage dependence of brightness of thin phosphor layers was studied. As it was described, the brightness L_v versus accelerating voltage V_0 curves show a low voltage tail below 3—5 kV and for higher voltages they exhibit a strictly linear relationship. Fig. 1 shows some typical L_v versus V_0 curves, characteristic for various types of phosphors and scintillator crystals.

The intersection of the linear section with the horizontal V_0 axis is called the dead voltage V_d [4]. V_d is a characteristic value for each phosphor sample, it varied between 1—3.3 kV for the luminescent microcrystals studied.

In a previous paper [3] the effects of artificial surface films, surface deterioration and chemical surface treatments on the dead voltage were discussed. In this paper some experiments dealing with the influence of excitation conditions on the L_v curves and V_d are described.

The experiments were carried out with a demountable cathode ray tube described in paper [1]. Only some technical details shall be mentioned here: to prevent condensation of vapours on the phosphor layer, a liquid air cold trap was used in the vacuum system [5]. The L_v curves were determined by a photoelectric cell coupled with a D. C. galvanometer, thus the average number of photons emitted/unit time was detected. The phosphor layers were settled without any binder [3].

The experiments are summarized in the following:

1) Only a slight difference was found between the L_v curves resp. V_d (50—80 V) for defocused D. C. resp. focused scanning electron beam (raster) excitation, using the same average (moderate, $< 2 \mu A/cm^2$) current density. The raster excitation is equivalent with high intensity subsequent pulsed excitation of the single microcrystals.

2) A small variation of V_d with i_0 current density (~ 100 V for 1—4 $\mu A/cm^2$) was observed. V_d is slightly increasing with i_0. This can be explained presumably by the voltage drop on the phosphor layer [6].
3) The dead voltage does not vary with the particle size of the phosphor. Several fractions of $\text{Zn}_2\text{SiO}_4-\text{Mn}$, $\text{ZnS}-\text{Ag}-\text{Cl}$, $\text{ZnCdS}-\text{Ag}$ phosphors were prepared by the settling process and the L_V curves of the fractions were determined.

4) V_d is not dependent on the thickness of the phosphor layer, the same value was found on the excited resp. glass side of the layers, proving that L_V and V_d are not influenced by diffuse optical effects.

5) It might be supposed that the dead voltage is caused possibly by charging up of the phosphor layer (sticking potential). This assumption was disproved by two experiments:

 a) A fine grid (electroformed mesh) was applied in immediate contact with the layers (experiment proposed by Prof. KALLMANN).

 b) Layers were settled on glass plates and plates provided with a conducting SnO_2 coating. No effects were found in experiments 5a resp. 5b.

6) The shape of the L_V curve and the magnitude of V_d are identical for two separate emission bands of the phosphor samples. This was observed for the blue resp. green emission band of several hex. ZnS-10^{-4}Ag$-x$Cu$-Cl$ samples ($x = 10^{-8}-10^{-4}$).

7) It may be assumed that the dead voltage is an effect caused by traps (proposed explanation of RUPPEL). To check the validity of this supposition, the influences of simultaneous 3650 Å U. V. resp. $> 0,8\mu$ I. R. irradiation and cathode ray excitation were studied. As it was found by some authors, the effect of traps can be eliminated in some crystal counters by applying U. V. resp. I. R. radiation [7, 8].

 a) The application of strong U. V. irradiation besides C. R. excitation caused the superposition of steady state photo- resp. cathodoluminescence emission. This appeared in the constant vertical shift of the L_V curves.

 b) The application of I. R. irradiation caused a nearly constant decrease of brightness (quenching), not varying with V_0. A slight horizontal shift of the L_V curves was observed, but the increment of V_d was negligible (80$-$120 V).

Summarizing the results of our experiments, the form of the L_V curve and the magnitude of V_d can be only slightly influenced by conditions of excitation. The experiments made to suppress the dead voltage by chemical [3] or physical manipulations were not successful. The L_V curve resp. V_d are characteristic for the phosphor material.

A detailed theoretical discussion of the L_V curve will be given in another paper [9].

The author wishes to express his sincere thanks to Professor Dr. H. KALLMANN and to Dr. W. RUPPEL for valuable discussions.

REFERENCES