Glossary Terms

Absorber 29
Absorber tube 495
Absorptivity or absorptance (α) 378
AC 341
Active region 399
Aerosol optical depth 584
Air mass 584, 608
Air-conditioning 441
Albedo 553, 608
AM1.5 79
Amorphous 270
Antireflection coating layer (ARC) 226
APAR 140
Aperture 521
a-Si 341
Autocorrelation 634
Black body 29
Blackbody (BB) radiation 358
Blocking, blocking losses 29
BOS 341
Broadband radiation 584
Bulk heterojunction 97
Cadmium telluride (CdTe) solar cells 170
Capacity factor 29
Carnot efficiency 521
CB (carbon black) 521
CdS 341
CdTe 1, 341
Central receiver system, concentrating receiver system (CRS) 29
Chalcopyrite compounds 323
Chalcopyrite solar cells 170
CIGS 341
CIS 341
Clearness index 634
Clear-sky index 634
Clear-sky radiation 715
Coefficient of performance (COP) 441
Collector area: Aperture, absorber, and gross area 378
Collector loop (PTC) 129
Collector mean temperature (T_m) 378
Concentration ratio 29
Conjugated molecule 97
Conversion efficiency 1
Cooling 441
Cost of saved primary energy 441
CPC 495
CPC (compound parabolic concentrator) 521
c-Si 341
CSP 649
CSP (concentrating solar power) 521
DC 341
Defects 323
Demonstration project 441
Desalination 649
Detailed balance 358
Diffuse hemispherical radiation 584
Digital elevation model (DEM) 715
Direct normal irradiance, beam irradiance 129
Direct normal irradiation (DNI) 29
Direct normal radiation 584
Direct normal solar irradiance 521
Dish 72
Dislocations 226
Dispatchability, dispatchable 29
DNI 341, 634
Drive (PTC) 129
Dye sensitized solar cells (DSSC) 170
Earth's orbit 553
Earth's revolution 553
EC framework program 174
Efficiency 129
Efficiency (PTC) 129
Electric storage cookers 417
Electron acceptor 97
Electron donor 97
Electron/hole 495
Emissivity (ε) 378
Emittance (M) 378
Endothermic 521
Energy and power 212
EPBT 341
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeral region</td>
<td>399</td>
</tr>
<tr>
<td>Epitaxy</td>
<td>358</td>
</tr>
<tr>
<td>Equinox</td>
<td>553</td>
</tr>
<tr>
<td>ESP</td>
<td>341</td>
</tr>
<tr>
<td>Evacuated tube collector (ETC)</td>
<td>378</td>
</tr>
<tr>
<td>Exciton</td>
<td>97</td>
</tr>
<tr>
<td>Exergy efficiency (for a solar thermochemical process)</td>
<td>521</td>
</tr>
<tr>
<td>Exothermic</td>
<td>521</td>
</tr>
<tr>
<td>Extinction</td>
<td>584</td>
</tr>
<tr>
<td>Extraterrestrial solar radiation</td>
<td>584</td>
</tr>
<tr>
<td>Facula</td>
<td>399</td>
</tr>
<tr>
<td>fAPAR</td>
<td>140</td>
</tr>
<tr>
<td>FBR</td>
<td>341</td>
</tr>
<tr>
<td>Feed-in tariff</td>
<td>174</td>
</tr>
<tr>
<td>Feed-in tariff, FiT or FIT</td>
<td>212</td>
</tr>
<tr>
<td>Fill factor of the cell</td>
<td>79</td>
</tr>
<tr>
<td>fIPAR</td>
<td>140</td>
</tr>
<tr>
<td>Flat plate collector (FPC)</td>
<td>378</td>
</tr>
<tr>
<td>Fuel cell</td>
<td>521</td>
</tr>
<tr>
<td>GaAs</td>
<td>341</td>
</tr>
<tr>
<td>Gap states</td>
<td>270</td>
</tr>
<tr>
<td>Geographic information system (GIS)</td>
<td>608</td>
</tr>
<tr>
<td>Gettering process</td>
<td>226</td>
</tr>
<tr>
<td>GHG</td>
<td>341</td>
</tr>
<tr>
<td>GHI</td>
<td>634</td>
</tr>
<tr>
<td>Global hemispherical radiation</td>
<td>584</td>
</tr>
<tr>
<td>Global PAR</td>
<td>140</td>
</tr>
<tr>
<td>Global positioning system (GPS)</td>
<td>608</td>
</tr>
<tr>
<td>Global warming</td>
<td>417</td>
</tr>
<tr>
<td>Grain boundaries</td>
<td>323</td>
</tr>
<tr>
<td>Grain boundary (GB)</td>
<td>226</td>
</tr>
<tr>
<td>Green certificates</td>
<td>212</td>
</tr>
<tr>
<td>Greenhouse</td>
<td>658</td>
</tr>
<tr>
<td>Ground albedo</td>
<td>634</td>
</tr>
<tr>
<td>GWP</td>
<td>341</td>
</tr>
<tr>
<td>Hadley circulation</td>
<td>553</td>
</tr>
<tr>
<td>HCPV</td>
<td>341</td>
</tr>
<tr>
<td>Heat pipe</td>
<td>378</td>
</tr>
<tr>
<td>Heat recovery steam generator (HRSG)</td>
<td>29</td>
</tr>
<tr>
<td>Heat storage cookers</td>
<td>417</td>
</tr>
<tr>
<td>Heat transfer fluid (“HTF”)</td>
<td>129</td>
</tr>
<tr>
<td>Heat transfer fluid (HTF) in a CRS</td>
<td>29</td>
</tr>
<tr>
<td>Heliostat</td>
<td>29, 72</td>
</tr>
<tr>
<td>Heliostat field</td>
<td>29</td>
</tr>
<tr>
<td>Heterojunction</td>
<td>1</td>
</tr>
<tr>
<td>Heterojunctions</td>
<td>323</td>
</tr>
<tr>
<td>High efficiency</td>
<td>323</td>
</tr>
<tr>
<td>Homojunction (heterojunction)</td>
<td>226</td>
</tr>
<tr>
<td>Hot carrier solar cell</td>
<td>170</td>
</tr>
<tr>
<td>Hybrid solar cookers</td>
<td>417</td>
</tr>
<tr>
<td>Hybrid system</td>
<td>29</td>
</tr>
<tr>
<td>IAM</td>
<td>72</td>
</tr>
<tr>
<td>Ideal PAR energy sensor</td>
<td>140</td>
</tr>
<tr>
<td>Ideal PAR quantum sensor</td>
<td>140</td>
</tr>
<tr>
<td>III-V Solar cells</td>
<td>170</td>
</tr>
<tr>
<td>Immobilized catalyst</td>
<td>495</td>
</tr>
<tr>
<td>Impact ionization</td>
<td>358</td>
</tr>
<tr>
<td>Incidence angle</td>
<td>584</td>
</tr>
<tr>
<td>Incident angle modifier (IAM)</td>
<td>378</td>
</tr>
<tr>
<td>Indoor solar cooking</td>
<td>417</td>
</tr>
<tr>
<td>Insolation</td>
<td>553</td>
</tr>
<tr>
<td>Inter tropical convergence zone</td>
<td>553</td>
</tr>
<tr>
<td>Intercept factor</td>
<td>129</td>
</tr>
<tr>
<td>Inverters</td>
<td>212</td>
</tr>
<tr>
<td>IPAR</td>
<td>140</td>
</tr>
<tr>
<td>IPCE</td>
<td>79</td>
</tr>
<tr>
<td>Irradiance</td>
<td>608</td>
</tr>
<tr>
<td>Langley plot</td>
<td>608</td>
</tr>
<tr>
<td>Latent heat storage</td>
<td>688</td>
</tr>
<tr>
<td>LCA</td>
<td>341</td>
</tr>
<tr>
<td>LCI</td>
<td>341</td>
</tr>
<tr>
<td>Levelized electricity cost (LEC)</td>
<td>658</td>
</tr>
<tr>
<td>Life cycle analysis (LCA)</td>
<td>170</td>
</tr>
<tr>
<td>Linke turbidity factor</td>
<td>715</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>72</td>
</tr>
<tr>
<td>Longitudinal IAM</td>
<td>72</td>
</tr>
<tr>
<td>Longwave</td>
<td>608</td>
</tr>
<tr>
<td>Luminosity</td>
<td>553</td>
</tr>
<tr>
<td>Luminous efficacy</td>
<td>608</td>
</tr>
<tr>
<td>mc-Si</td>
<td>341</td>
</tr>
<tr>
<td>MED</td>
<td>649</td>
</tr>
<tr>
<td>Mesoscopic</td>
<td>79</td>
</tr>
<tr>
<td>Metastability</td>
<td>270</td>
</tr>
<tr>
<td>Microcrystalline</td>
<td>270</td>
</tr>
<tr>
<td>Microstructure</td>
<td>270</td>
</tr>
<tr>
<td>Mie scattering</td>
<td>608</td>
</tr>
<tr>
<td>Mineralization</td>
<td>495</td>
</tr>
<tr>
<td>Minority carrier diffusion length L</td>
<td>226</td>
</tr>
<tr>
<td>Minority carrier lifetime t and diffusion length L</td>
<td>226</td>
</tr>
<tr>
<td>Mirror, mirror panel (PTC)</td>
<td>129</td>
</tr>
<tr>
<td>Module (PTC)</td>
<td>129</td>
</tr>
<tr>
<td>mono-Si</td>
<td>341</td>
</tr>
<tr>
<td>Monte Carlo code</td>
<td>608</td>
</tr>
<tr>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Solar cell production capacities</td>
<td>174</td>
</tr>
<tr>
<td>Solar cells</td>
<td>170</td>
</tr>
<tr>
<td>Solar chemical heat pipe</td>
<td>521</td>
</tr>
<tr>
<td>Solar concentration ratio</td>
<td>521</td>
</tr>
<tr>
<td>Solar constant</td>
<td>399</td>
</tr>
<tr>
<td>Solar cookers</td>
<td>417</td>
</tr>
<tr>
<td>Solar cycle</td>
<td>399</td>
</tr>
<tr>
<td>Solar dryer</td>
<td>417</td>
</tr>
<tr>
<td>Solar energy utilization</td>
<td>658</td>
</tr>
<tr>
<td>Solar field</td>
<td>129</td>
</tr>
<tr>
<td>Solar fraction (F_{sav})</td>
<td>378</td>
</tr>
<tr>
<td>Solar fuels</td>
<td>521</td>
</tr>
<tr>
<td>Solar irradiance</td>
<td>553</td>
</tr>
<tr>
<td>(Solar) Irradiance (G)</td>
<td>378</td>
</tr>
<tr>
<td>Solar module</td>
<td>1</td>
</tr>
<tr>
<td>Solar photochemistry</td>
<td>495</td>
</tr>
<tr>
<td>Solar radiation</td>
<td>584</td>
</tr>
<tr>
<td>Solar radiation database</td>
<td>715</td>
</tr>
<tr>
<td>Solar spectral irradiance (SSI)</td>
<td>609</td>
</tr>
<tr>
<td>Solar spectrum AM 1.5</td>
<td>379</td>
</tr>
<tr>
<td>Solar thermochemical process</td>
<td>521</td>
</tr>
<tr>
<td>Solar updraft tower (SUT)</td>
<td>658</td>
</tr>
<tr>
<td>Sorption</td>
<td>441</td>
</tr>
<tr>
<td>SOx</td>
<td>341</td>
</tr>
<tr>
<td>Spectral error</td>
<td>140</td>
</tr>
<tr>
<td>Spectral-selective coating</td>
<td>378</td>
</tr>
<tr>
<td>Spectroradiometry</td>
<td>609</td>
</tr>
<tr>
<td>Spillage, spillage losses</td>
<td>29</td>
</tr>
<tr>
<td>Stabilized efficiency</td>
<td>270</td>
</tr>
<tr>
<td>Standard test conditions (STC)</td>
<td>1</td>
</tr>
<tr>
<td>Stratosphere</td>
<td>553, 609</td>
</tr>
<tr>
<td>Summer solstice</td>
<td>553</td>
</tr>
<tr>
<td>Sun</td>
<td>399</td>
</tr>
<tr>
<td>Sun sensor</td>
<td>129</td>
</tr>
<tr>
<td>Sunphotometry</td>
<td>609</td>
</tr>
<tr>
<td>Sunspot number</td>
<td>399</td>
</tr>
<tr>
<td>Sunspot</td>
<td>399</td>
</tr>
<tr>
<td>Syngas</td>
<td>521</td>
</tr>
<tr>
<td>Tandem</td>
<td>358</td>
</tr>
<tr>
<td>Teleconnection</td>
<td>553</td>
</tr>
<tr>
<td>TeO₂</td>
<td>341</td>
</tr>
<tr>
<td>Texturization</td>
<td>226</td>
</tr>
<tr>
<td>Thermalization</td>
<td>358</td>
</tr>
<tr>
<td>Thermochemical heat storage</td>
<td>688</td>
</tr>
<tr>
<td>Thermocline</td>
<td>29</td>
</tr>
<tr>
<td>Thin film</td>
<td>1</td>
</tr>
<tr>
<td>Thin-film cells, a-silicon (a-Si), mc-silicon (mc-Si)</td>
<td>212</td>
</tr>
<tr>
<td>Top of atmosphere</td>
<td>553</td>
</tr>
<tr>
<td>Topography</td>
<td>715</td>
</tr>
<tr>
<td>Total solar irradiance (TSI)</td>
<td>609</td>
</tr>
<tr>
<td>Tower</td>
<td>72</td>
</tr>
<tr>
<td>Tracking (PTC)</td>
<td>129</td>
</tr>
<tr>
<td>Transparent conductive oxide (TCO)</td>
<td>270</td>
</tr>
<tr>
<td>Transversal</td>
<td>72</td>
</tr>
<tr>
<td>Transversal IAM</td>
<td>72</td>
</tr>
<tr>
<td>Troposphere</td>
<td>553, 609</td>
</tr>
<tr>
<td>Trough</td>
<td>72</td>
</tr>
<tr>
<td>UCTE</td>
<td>341</td>
</tr>
<tr>
<td>Up, down conversion</td>
<td>170</td>
</tr>
<tr>
<td>Upconversion</td>
<td>358</td>
</tr>
<tr>
<td>Viewshed</td>
<td>715</td>
</tr>
<tr>
<td>VTD</td>
<td>341</td>
</tr>
<tr>
<td>Wafer</td>
<td>226</td>
</tr>
<tr>
<td>Winter solstice</td>
<td>553</td>
</tr>
<tr>
<td>Zenith angle</td>
<td>584</td>
</tr>
<tr>
<td>ZLD</td>
<td>649</td>
</tr>
</tbody>
</table>
hydrogenated silicon
- amorphous 281, 283
 - to microcrystalline Si:H properties 287
- bandgap 281
- Collins-Cody gaps 282
- defects in the μc-Si:H material 302
- electron and hole transport properties in μc-Si:H 288
- films 285
- germanium alloys 277
- materials 274
 - Fermi level 287
 - Si:H-based materials 272
- microcrystalline 271
- nanocrystalline 271
- Tauc’s gap 281
- Urbach edge 283
- Urbach tails 282
hydrogen-dilution gas flow ratio 274
hydroxyl radicals 496, 501
hygroscopicity 708

I
incident photon to current conversion efficiency (IPCE) 88
incident radiation, spectral composition 148
indirect solar drier 418
indirect storage concepts 704
indium 2
induced-draft cooling tower 465
industrial wastewater 496, 500
inorganic 97, 119, 697
 - materials, thermal stability 697
 - photovoltaic (PV) 97
 - semiconductors 119
instantaneous clearness index 641
integrated water vapor (IWV) 627
interdigitated back contact solar cells 177
intermediate level semiconductors (ILSC) 368
internal heat transfer
 - Sandwich concept 709
international pyrheliometer comparison (IPC) 588
International Satellite Cloud Climatology Project (ISCCP) 722
interplanetary field (IMF) 406
inter-tropical convergence zone (ITCZ) 567, 580
iron
- concentration 509
- source 509
irradiance
- distributions 641
- geometry 160
 - long-term variability 645
 - maps, satellite-based 640
K
Kirchhoff’s law 363
kriging of differences 643
L
Lambertian scattering 157
Lambert’s cosine law 585
land surface 569
Langevin recombination rate 106
Langley plot technique 617
Langmuir adsorption 506
Langmuir–Hinshelwood mechanism 505
latent heat energy storage 701
latent heat storage 694
law of blackbody radiation 363
leaf area index (LAI) measurements 159
life cycle assessments (LCAs) 171
life cycle inventory 344
light-beam induced current (LBIC) 244
light-emitting diodes (LEDs) 146
light harvesting 84, 86
 - by advanced 91
linear concentrating collector 72
linear Fresnel collector 72
 - benefits 77
 - disadvantages 77
 - main features 77
 - receiver design 76
 - target markets 78
linear Fresnel reflector 74, 76, 78
 - design 74
 - optical losses 76
 - reference area 76
Linke turbidity coefficient 723, 726
liquefied refrigerant 454
liquid
 - desiccant air-conditioning (LDAC) systems 447
 - energy storage 706
 - storage materials 692–693
 - working fluid, direct storage 702
lithium bromide 448
low-temperature storage 696
luminosity 554
M
man-made aquifers 693
maritime aerosol 569
Markov chain models 642
mechanical vapor compression (MVC) 649, 651
membrane
 - bioreactor (MBR) 496
 - distillation (MD) 650
mesoscopic solar cells 79, 172
 - dye-sensitized 81
metal-insulator-metal (MIM) model 106
metallurgical
 - grade silicon (MGS) 542
 - industry 541
 - silicon purification 228
metal organic chemical vapor deposition (MOCVD) 331
microcrystalline
 - material deposition 278
 - silicon photovoltaic modules 345
 - solar cells 298
Mie scattering 564
model atmosphere 626
modeled solar radiation 598
model output statistics (MOS) 579
molecular beam epitaxy (MBE) 331
molecular photovoltaic cells 94
molecular scattering 621
molluscan 235
 - silicon 235
molten salt 49, 53, 60, 67, 693, 703
 - liquid film receiver 43
 - storage 706–707
monocrystalline silicon
 - transfer layer 237
monocrystalline solar cell 227
multicarrier generation 371
multicrystalline silicon 231, 233
 - industry 248
 - solar cells 190
 - wafer
 - extended crystallographic defects 237
 - grain boundaries (GBs) 237
 - hydrogenation 239
 - improvement 241
 - impurity 237
 - impurity gettering treatments 240
 - interstitial iron 242
 - material improvement techniques 239
 - n-Type 242
 - p-type 243
multicrystalline solar cell 227
multi-effect
 - desalination 651
 - humidification 650
multi-junction solar cell 283, 307, 364–366, 375
– lattice parameters 366
– optoelectronic properties 366
multinary chalcopyrite compounds
– as photovoltaic materials 324
multiphoton conversion 368
multiple exciton generation 371
– with heat recovery 651
multi-stage desalination (MSD)
municipal wastewater 496

N
nanocrystal 280
nanorod 92
natural gas
– condensation boiler 478
– thermal decomposition 536
Nernst potential 83
net collector efficiency 475
net solar radiation 720
nitrile 122
nitrite salt 706
normal hydrogen electrode (NHE) 83
n-type silicon 242
nuclear fuel cycle 352
nuclear power stations 658

O
open-circuit photovoltage 81, 84, 89
open circuit voltage 106
open cooling cycles 490–491
open sorptive cooling cycle 457
operational cloud observation 567
optical/optically
– air mass 615, 624
– depth 618
– radiation 585
organic
– electroluminescence devices (OLED) 172
– molecule 100
– photovoltaics (OPV) 97
– bulk heterojunction (BHJ) 109, 121
– cell 106
– degradation 120
– fabrication 119
– flexible plastic substrates 109
– low band gap polymers 122
– operating principles 100
– operational stability 120
– solution-processed 109
– transparent conductive oxide (TCO) 109
– vacuum-deposited 109
– vacuum-processed 115
– pollution/pollutant, photomineralization 505
– semiconductors 108
– photoinduced charge transfer 101
– solar cell 97, 99, 172
– building 108
– efficiency 104
– photovoltaic power generation 123
– tandem cell 119
– solids, photoconduction 102
organic photovoltaics 179
organic pollutants 505
organic solar cell
– tandem cell 119
organophosphorous contaminants 500
orographic clouds 573
orography 32
overcast irradiance 720
oxide nanoparticles 87
oxy-combustion 536
ozone 562, 626
ozone sondes 626
P
parabola 74
parabolic mirror 522
parabolic trough collector (PIC) 132, 135
– absorber (receiver) 131
– drive Mechanism 135
– foundation 138
– heat transfer fluid 138
– mirror 131
– optical efficiency 132
– performance properties of receivers 131
– pylons 138
– solar power plants 129
– support structure 134
– technology description 131
– tracking 135
parabolic trough concentrators 515
paraffins 696
Peltier
– cooling 442
– effect 442
phase change, direct storage 704
phase change material (PCM)
– high-temperature storage 697
– indirect storage 707
– macro-encapsulation 708
phononic engineering 373
photocatalysis/photocatalytic 498–499, 504–505, 512
– disinfection 512
– mineralization 504
– process 498
– systems, true activation energy 504
– water purification 505
photoconductors 116
photocurrent 226
photodiode 145
photoexcitation 84
photo-Fenton process 507–508, 517, 657
– acidification 508
photoluminescence 326
photometer/photometry 616
photomineralization 502, 506
photovoltaic (PV)
– annual capacities 213
– average cost 187
– balance of system 219
– carbon footprint 352
– CdTe solar cells 178
– cell 79, 84–85
– conventional p–n junction 85
– chalcopyrite compounds 323, 324
– commercial thin-film technologies 177
– conversion 85
– collection losses 360
– conversion efficiency 360
– losses in semiconductor-based devices 360
– net absorption losses 360
– converters 84
– copper indium gallium sulfur selenide material 178
– costs 220
– domestic electricity markets 198
– downstream processes 343
– effect 175
– efficiency 364
solar electricity 5, 212
 – cost-effective production 21
solar-electric microwave oven 427
solar electromagnetic spectrum 609
solar elevation angle 615
solar energy 1–2, 79, 174, 417–418
 – absorptivity 386
 – applications of water storages 692
 – collection 547
 – conversion 358
 – conversion efficiency
 – blackbody limit 359
 – Carnot limit 359
 – electrical losses 361
 – Landsberg limit 360
 – multicolor limit 360
 – nonradiative recombination 361
 – optical losses 361
 – Shockley–Queisser (SQ) limit 359, 361
 – systems 603
 – thermal losses 361
 – thermodynamic limits 359
 – time reversibility 360
 – drying 418
 – economy 658
 – limiting efficiency 359
 – photovoltaic conversion efficiency 358
 – potential 579
 – Shockley–Queisser model 2
 – in thermochemical processing 521
solar fraction for cooling 469
solar fuel 62, 522
solar fullerene synthesis 544
solar-generated electricity 547
solar geometry 614
solar glass 388
solar-grade
 – polysilicon 190
 – silicon 195, 233
solar heat 379, 443, 701
solar-hybrid gas turbine systems 64
solar-hybrid micro-turbine (SHM) 52
solar industry association 224
solar insolation 701
solar instrumentation 604
solar irradiance/irradiation 222, 554, 645–646
 – accuracy 574
 – at the top of atmosphere (TOA) 554
 – distribution 581
 – energy 43
 – flux density 554
 – global distribution 553
 – meteorological modeling 646
 – uncertainty 574
 – world standard group (WSG) 588
solar light energy, bulk heterojunction 81
solar lime 545
solar luminosity 554
solar measurement 604
solar modules 309
solar multivoltage cooker 427
solar oven 438
solar photocatalysis/photic catalytic
 – disinfection 498, 513
 – processes
 – drinking water 514
 – water treatment 515
solar photocatalytic detoxification
 process 498
solar photocatalytic disinfection 497
solar photo-Fenton 507
solar photon 615
 – scattering effects 619
 – photoreactor 509
 – physics 413
 – pond 693
solar power 524
 – tower 29
solar production
 – of fuels 527
 – of high-purity lime 545
 – of H 2 from fossil fuels 536
 – of material commodities 541
 – of metals 527
solar-produced carbon nanotubes 544
 – calculation procedure 726
 – components 585
 – cross-correlation analysis 643
 – database 716, 723
 – digital elevation model 716–717
 – digital surface models (DSM) 718
 – distribution function 640
 – earth’s atmosphere 612
 – fluctuations 634
 – ground meteorological stations 724
 – ground-reflected 720
 – guide to measurement uncertainty (GUM) 593
 – instrumentation 587
 – measurement 597, 604
 – scale 588
 – modeled data sets 601
 – modeling topographic effects 717
 – outside of the earth’s atmosphere 610
 – parameters 722
 – period of record 600
Index

– fatigue 67
– heat conductivity 704
– stability 706
– storage 59
– classification 701
– stratification in heat storage vessels 692
thermalization rate reduction 373
thermally-driven
– air-conditioning 490
– chiller 468–469, 478
– thermodynamic analysis 444
– cooling cycles 442
– cooling system 443, 468
thermally-operated cooling processes 485
thermodynamic(s) 359
– of solar thermochemical conversion 522
thermolysis of H$_2$O 530
thiadiazone 122
thin film
– silicon solar cells 271
– solar cells 194, 324
– back reflectors 305
– cell structures 309
– modules 309
– performance issues 309
– production companies 193
– technologies, large-scale processing 333
thiophene 110, 122
tilt of the earth’s rotation axis 558
top of atmosphere albedo 559
top of atmosphere irradiance
– global distribution 555
– obliquity of the Earth’s axis 555
– solar zenith angle (SZA) 556
topyography/topographic, solar radiation modeling 715, 722, 728
total organic carbon (TOC) 501
total photovoltage 119
total solar irradiance (TSI)
– construction of a composite 401
– by multi-linear regression 412
– network 410
– observations 400
– photospheric faculae 410
– spectroheliograms 411
– three-component proxy model 407
– variability 404
– variations 399
tracking reflector systems 130
transmission electron microscopy (TEM) 112
transparent conductive oxide 8
trichlorosilane 228
– gas 195
trimethyl boron (TMB) 273
tubular aerosol flow reactor 535
tubular photoreactor 509
typical meteorological year (TMY) 601
upconversion 370
upgraded metallurgical silicon (UMG-Si) 196, 229
– feedstock 243
upper atmosphere research satellite (UARS) 611
urban aerosol 569

V
vacuum
– tower telescope (VTT) 410
– tube solar collectors 456
Van der Waals forces 104
vapor compression 649
– chiller 476, 478
very-high-temperature nuclear reactors (VHTR) 530
Vuilleumier cycle 444

W
wafer-based 185
wafer sawing 234
wastewater reuse 496
water
– clouds 564
– decontamination 496, 498
– solar hardware 515
– desalination 650
– disinfection 496–497
– purification, semiconductor photocatalysis 506
– vapor 568, 627
water-splitting thermochemical cycles 530
wet cooling tower 444
wet recooling 464
wind
– energy planning 579
– tunnel tests 683
world 588
– radiation reference 588

X
X-ray diffraction (XRD) 112
xerography 102