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Preface 

The central mathematical problem of quantum field theory, as it is currently 

formulated in terms of Euclidean Feynman integrals, is to construct a measure on 

the space of fields {~(x)] given by 

d~(~) = const.ehV(~)dP(~) 

Here the Gaussian measure dP(~) is determined by the free or quadratic part ~0 of 

the Lagrangian of the model; its covariance C is given by 

½ l~, C -I~) = f~0(~(x)) dx . 

The potential V(~) is determined by the interaction part &~int of the Lagrangian: 

V(¢) = -I~int(~(x)) dx D 

These measures may not be genuine for technical reasons - the presence of fermions 

or lack of regularity - and so what we ask of the above formal expression for d~ 

is that its moments exist. 

The Gaussian measure dP(¢) is well understood. For instance, the integral of 

a polynomial in # can be elegantly evaluated as a sum over graphs whose lines 

correspond to the covariance C. The non-Gaussian measure d~(#) is another matter. 

Postponing the question of the actual existence of d~, we can ask whether it 

exists in perturbation theory, i.e., as a formal power series in the coupling 

constant A, again a question about Gaussian integrals. Although simpler, this 

question, or some version of it, has been under investigation for about half a 

century. The difficulties are well known: in all models of interest, the 

covariance C(x,y) is a classical Green's function with short-distance or 

ultraviolet (UV) singularities as Ix-yl ~ 0; if massless fields are involved, 

there is in addition the long-distance or infrared (IR) problem that C(x,y) does 

not decay exponentially as Ix-yl ~ ~. As a result, most of the graphs in the 

perturbation series are infinite. 

The folk remedy is to cancel these infinities by adjusting or renormalizing V 

with counterterms 6V(~,A): 



IV 

AV+6V 
dv ~ dv = const.e dP . 

ren 

The counterterms 6V(#,A) are permitted to have the same form as terms in the 

original Lagrangian, but the coefficients of these terms are formal power series 

in k which themselves have infinite coefficients. The central problem of 

perturbative renormalization theory is to demonstrate that there is some choice of 

6V for which all the infinities cancel, yielding a renormalized perturbation 

series with finite coefficients. 

Such a demonstration typically encounters severe combinatorial and graphical 

complexities. To each order in k, there are many graphs. Elementary power 

counting considerations may indicate that a graph G is finite but such power 

counting is too superficial in that G may contain divergent subgraphs. So a good 

renormalization algorithm on a graph G must first make subtractions on the 

divergent subgraphs of G, beginning with the smallest. But - and this is the 

notorious problem of "overlapping divergences" - what if two divergent subgraphs 

G I, G 2 C G intersect and neither is a subgraph of the other? In general, the 

renormalization procedure on G 1 will disturb that on G 2, and vice versa. 

Furthermore, how can we be sure that the required subtractions on all of these 

graphs to all orders can be implemented by an a priori choice of 6V? 

It took many years and the heroic efforts of many people to chart a safe 

course through these difficulties. Some of the milestones in this journey were 

the original work on QED 1 by Feynman, Schwinger and Tomonaga, the refinements by 

Dyson, Matthews, Salam, ..., the Dyson-Weinberg Power Counting Theorem 2, the 

renormalization prescription of Bogoliubov and Parasiuk 3 and the subsequent 

improvements of Hepp 4 and Zimmermann 5, culminating in the 1960s in what is now 

known as BPHZ renormalization 6. Still, in 1970, a student of perturbative 

renormalization knew that he was not embarking on a pleasure cruise. 

The early 1970s brought a new set of ideas to the subject, namely the 

renormalization group ideas of Wilson 7. As interpreted by Gallavotti and 

co-workers 8-I0, this approach is based on making scale decompositions of the 



fields or of the covariance: ~ = ~ #(h) or C = ~ C (h) , where C (h) has 

length scale M -h, M > 1 being a fixed scale parameter. In effect, this 

decomposition resolves the UV and IR singularities of C. By successively 

integrating out the fields ~(h)(from high to low h), Galiavotti and Nicol6 I0 

obtained a natural and beautiful tree expansion for dgre n. The GN tree expansion 

dramatically simplifies the problem of perturbative renormalization, enabling one 

to make a choice of counterterms 6V and to renormalize scale by scale without ever 

seeing overlapping divergences or the usual combinatorial complexities. With the 

control of the GN tree expansion, it is then relatively easy to show that a 

renormalized graph is finite and to obtain a sharp estimate on its size. 

If one wishes to apply the GN method to a gauge field model, a basic problem 

arises because the scale decompositions do not respect gauge invariance: the 

model is renormalizable but it is not clear that renormalization can be achieved 

using only gauge invariant counterterms 5V. (For that matter, this problem arises 

in any renormalization scheme based on BPHZ ideas.) In this monograph we return 

to the original model of QED and verify that the GN method can be applied with 

only gauge invariant counterterms in d~ 
ren 

In this monograph we have tried hard to provide a complete exposition that 

will be accessible to a wide audience - not just to experts in field theory. In 

1988, perturbative renormalization may still not be a pleasure cruise, but we 

believe that the student can lo0k forward to a relatively easy journey which 

boasts a number of beautiful vistas. 
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