Two-Dimensional Gel Electrophoresis Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Eye Lens to Identify Biomarkers of Age-Related Cataract

  • Paul C. Guest
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)


This chapter describes the application of two-dimensional gel electrophoresis (2DGE) combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the analysis of rat eye lens proteins. The main purpose was to identify proteins that may serve as potential biomarkers in age-related cataract formation. This includes the family of proteins known as the crystallins. Structural proteins and enzymes involved antioxidant activities. In addition, we also analyzed lenses from other species to illustrate the potential of using this technique in clinical and preclinical biomarker studies.

Key words

Aging Diabetes Eye lens Proteomics 2D gel electrophoresis Crystallin dimer Cytoskeletal protein Metabolic enzyme Redox enzyme 


  1. 1.
    Ray NJ (2015) Biophysical chemistry of the ageing eye lens. Biophys Rev 7(4):353–368CrossRefGoogle Scholar
  2. 2.
    Moreau KL, King JA (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 18(5):273–282CrossRefGoogle Scholar
  3. 3.
    Aarts HJ, Lubsen NH, Schoenmakers JG (1989) Crystallin gene expression during rat lens development. Eur J Biochem 183(1):31–36CrossRefGoogle Scholar
  4. 4.
    Dahm R, van Marle J, Quinlan RA, Prescott AR, Vrensen GFJM (2011) Homeostasis in the vertebrate lens: mechanisms of solute exchange. Philos Trans R Soc Lond B 366(1568):1265–1277CrossRefGoogle Scholar
  5. 5.
    Mochizuki T, Masai I (2014) The lens equator: a platform for molecular machinery that regulates the switch from cell proliferation to differentiation in the vertebrate lens. Develop Growth Differ 56(5):387–401CrossRefGoogle Scholar
  6. 6.
    Wistow G (2012) The human crystallin gene families. Hum Genomics 6:26. Scholar
  7. 7.
    Chen J, Callis PR, King J (2009) Mechanism of the very efficient quenching of tryptophan fluorescence in human γD- and γS-crystallins: the γ-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry 48(17):3708–3716CrossRefGoogle Scholar
  8. 8.
    Zhao H, Brown PH, Magone MT, Schuck P (2011) The molecular refractive function of lens γ-crystallins. J Mol Biol 411(3):680–699CrossRefGoogle Scholar
  9. 9.
    Mahendiran K, Elie C, Nebel J-C, Ryan A, Pierscionek BK (2014) Primary sequence contribution to the optical function of the eye lens. Sci Rep 4:5195. Scholar
  10. 10.
    Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1221–e1234CrossRefGoogle Scholar
  11. 11.
    Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A (2015) Lens biology and biochemistry. Prog Mol Biol Transl Sci 134:169–201CrossRefGoogle Scholar
  12. 12.
    Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Vision Loss Expert Group of the Global Burden of Disease Study et al (2016) Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39(9):1643–1649CrossRefGoogle Scholar
  13. 13.
    Periyasamy P, Shinohara T (2017) Age-related cataracts: Role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 60:1–19CrossRefGoogle Scholar
  14. 14.
    Zhou J, Hui Y, Li Y (2001) Expression of vimentin in lens epithelial cells of age-related cataract. Zhonghua Yan Ke Za Zhi 37(5):342–345PubMedGoogle Scholar
  15. 15.
    Andley UP, Malone JP, Townsend RR (2014) In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin. PLoS One 9(4):e95507. Scholar
  16. 16.
    Zhou HY, Yan H, Wang LL, Yan WJ, Shui YB, Beebe DC (2015) Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei. Proteomics Clin Appl 9(7-8):776–786CrossRefGoogle Scholar
  17. 17.
    Matsui NM, Smith DM, Clauser KR, Fichmann J, Andrews LE, Sullivan CM (1997) Immobilized pH gradient two-dimensional gel electrophoresis and mass spectrometric identification of cytokine-regulated proteins in ME-180 cervical carcinoma cells. Electrophoresis 18(3–4):409–417CrossRefGoogle Scholar
  18. 18.
    Müller DR, Schindler P, Coulot M, Voshol H, van Oostrum J (1999) Mass spectrometric characterization of stathmin isoforms separated by 2D PAGE. J Mass Spectrom 34(4):336–345CrossRefGoogle Scholar
  19. 19.
    England K, Cotter T (2004) Identification of carbonylated proteins by MALDI-TOF mass spectroscopy reveals susceptibility of ER. Biochem Biophys Res Commun 320(1):123–130CrossRefGoogle Scholar
  20. 20.
    Person MD, Shen J, Traner A, Hensley SC, Lo HH, Abbruzzese JL et al (2006) Protein fragment domains identified using 2D gel electrophoresis/MALDI-TOF. J Biomol Tech 17(2):145–456PubMedPubMedCentralGoogle Scholar
  21. 21.
    Wöhlbrand L, Ruppersberg HS, Feenders C, Blasius B, Braun HP, Rabus R (2016) Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. Proteomics 16(6):973–988CrossRefGoogle Scholar
  22. 22.
    Guest PC, Skynner HA, Salim K, Tattersall FD, Knowles MR, Atack JR (2006) Detection of gender differences in rat lens proteins using 2-D-DIGE. Proteomics 6(2):667–676CrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Paul C. Guest
    • 1
  1. 1.Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations