Absolute Quantification of Plasma Apolipoproteins for Cardiovascular Disease Risk Prediction

  • Betul Ozdemir
  • Zeliha Selamoglu
  • Nady BraidyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2138)


Apolipoproteins have important structural and functional roles in several lipoprotein particles. Apolipoproteins regulate lipid metabolism, adipose tissue, and energy production and serve major regulatory roles in both pre- and pro-atherosclerotic mechanisms. They are also involved in protective mechanisms against atherosclerotic plaques. Therefore, accurate quantification of apolipoproteins may serve as a crucial biomarker for cardiovascular diseases. However, most apolipoproteins cannot be detected using standard clinical immunoassays, and multiplexing is not available for some species of apolipoproteins. Herein, we describe a highly robust and quantitative method using liquid chromatography coupled to tandem mass spectrometry to quantify apolipoproteins in plasma. This methodology may add clinical value for profiling cardiovascular risk in vulnerable individuals and enable monitoring of apolipoprotein levels in plasma following intervention strategies.

Key words

Apolipoproteins Cardiovascular disease Metabolism Inflammation Oxidative stress Aging 



N.B. is the recipient of the Australian Research Council Discovery Early Career Research Award at the University of New South Wales, Sydney, Australia.


  1. 1.
    Vlad C, Burlacu A, Florea L, Artene B, Badarau S, Covic A et al (2019) A comprehensive review on apolipoproteins as nontraditional cardiovascular risk factors in end-stage renal disease: current evidence and perspectives. Int Urol Nephrol 51(7):1173–1189CrossRefGoogle Scholar
  2. 2.
    Kimak E, Nurczyk K, Skoczylas T, Duma D, Gieroba R, Solski J (2019) Fibroblast growth factor 21, epidermal growth factor receptor, interleukin 6, myeloperoxidase, lipid hydroperoxide, apolipoproteins A-I and B, as well as lipid and lipoprotein ratios as diagnostic serum biomarkers for gastric cancer. Pol Arch Intern Med 129(7–8):559–562PubMedGoogle Scholar
  3. 3.
    McQueen MJ, Hawken S, Wang X, Ounpuu S, Sniderman A, Probstfield J et al (2008) Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 372(9634):224–233CrossRefGoogle Scholar
  4. 4.
    Pencina MJ, D’Agostino RB, Zdrojewski T, Williams K, Thanassoulis G, Furberg CD et al (2015) Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C. Eur J Prev Cardiol 22(10):1321–1327CrossRefGoogle Scholar
  5. 5.
    Ajeganova S, Ehrnfelt C, Alizadeh R, Rohani M, Jogestrand T, Hafström I et al (2011) Longitudinal levels of apolipoproteins and antibodies against phosphorylcholine are independently associated with carotid artery atherosclerosis 5 years after rheumatoid arthritis onset—a prospective cohort study. Rheumatology (Oxford) 50(10):1785–1793CrossRefGoogle Scholar
  6. 6.
    Eo HS, Lee KB, Kim AK, Kim MH, Kim DH, Kim DI (2011) Association with inflammatory cells and apolipoproteins to the progression of atherosclerosis. J Korean Surg Soc 80(4):289–296CrossRefGoogle Scholar
  7. 7.
    Garber DW, Handattu SP, Datta G, Mishra VK, Gupta H, White CR et al (2006) Atherosclerosis and vascular disease: effects of peptide mimetics of apolipoproteins. Curr Pharm Biotechnol 7(4):235–240CrossRefGoogle Scholar
  8. 8.
    Horejsi B, Ceska R (2000) Apolipoproteins and atherosclerosis. Apolipoprotein E and apolipoprotein(a) as candidate genes of premature development of atherosclerosis. Physiol Res 49(Suppl 1):S63–S69PubMedGoogle Scholar
  9. 9.
    Seishima M (2016) Physiological function of apolipoproteins and atherosclerosis. Rinsho Byori 64(2):186–192PubMedGoogle Scholar
  10. 10.
    Zivanovic Z, Divjak I, Jovicevic M, Rabi-Zikic T, Radovanovic B, Ruzicka-Kaloci S et al (2018) Association between apolipoproteins AI and B and ultrasound indicators of carotid atherosclerosis. Curr Vasc Pharmacol 16(4):376–384CrossRefGoogle Scholar
  11. 11.
    Pechlaner R, Tsimikas S, Yin X, Willeit P, Baig F, Santer P et al (2017) Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-III. J Am Coll Cardiol 69(7):789–800CrossRefGoogle Scholar
  12. 12.
    Geifman N, Brinton RD, Kennedy RE, Schneider LS, Butte AJ (2017) Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease. Alzheimers Res Ther 9(1):10. Scholar
  13. 13.
    Davidsson P, Hulthe J, Fagerberg B, Olsson BM, Hallberg C, Dahllöf B et al (2005) A proteomic study of the apolipoproteins in LDL subclasses in patients with the metabolic syndrome and type 2 diabetes. J Lipid Res 46(9):1999–2006CrossRefGoogle Scholar
  14. 14.
    Oyelola O, Ajayi AA, Babalola RO, Stein EA (1995) Plasma lipids, lipoproteins, and apolipoproteins in Nigerian diabetes mellitus, essential hypertension, and hypertensive-diabetic patients. J Natl Med Assoc 87(2):113–118PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pac-Kozuchowska E, Szewczyk L, Witkowski D (2002) Evaluation of lipids, lipoproteins and apolipoproteins in the blood serum of children with type 1 diabetes. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw 8(1):23–27PubMedGoogle Scholar
  16. 16.
    Koch M, Jensen MK (2016) HDL-cholesterol and apolipoproteins in relation to dementia. Curr Opin Lipidol 27(1):76–87CrossRefGoogle Scholar
  17. 17.
    Ohtani R, Nirengi S, Nakamura M, Murase N, Sainouchi M, Kuwata Y et al (2018) High-density lipoprotein subclasses and mild cognitive impairment: study of outcome and aPolipoproteins in dementia (STOP-dementia)1. J Alzheimers Dis 66(1):289–296CrossRefGoogle Scholar
  18. 18.
    Tynkkynen J, Hernesniemi JA, Laatikainen T, Havulinna AS, Sundvall J, Leiviskä J et al (2016) Apolipoproteins and HDL cholesterol do not associate with the risk of future dementia and Alzheimer’s disease: the National Finnish population study (FINRISK). Age (Dordr) 38(5–6):465–473CrossRefGoogle Scholar
  19. 19.
    Luo M, Peng D (2016) The emerging role of apolipoprotein C-III: beyond effects on triglyceride metabolism. Lipids Health Dis 15(1):184. Scholar
  20. 20.
    Hoofnagle AN, Wener MH (2009) The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods 347(1–2):3–11CrossRefGoogle Scholar
  21. 21.
    van den Broek I, Sobhani K, Van Eyk JE (2017) Advances in quantifying apolipoproteins using LC-MS/MS technology: implications for the clinic. Expert Rev Proteomics 14(10):869–880CrossRefGoogle Scholar
  22. 22.
    Toth CA, Kuklenyik Z, Jones JI, Parks BA, Gardner MS, Schieltz DM et al (2017) On-column trypsin digestion coupled with LC-MS/MS for quantification of apolipoproteins. J Proteome 150:258–267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Cardiology Faculty of MedicineNigde Omer Halisdemir UniversityNigdeTurkey
  2. 2.Department of Medical Biology, Faculty of MedicineÖmer Halisdemir UniversityNigdeTurkey
  3. 3.Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyAustralia

Personalised recommendations